Pulmonary rehabilitation in severe COPD

daniel.langer@faber.kuleuven.be

Content

- Rehabilitation (how) does it work ?
- How to train the ventilatory limited patient ?

Chronic Obstructive Pulmonary Disease

NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Definition:

- Chronic obstructive pulmonary disease is characterized by airflow limitation that is not fully reversible.
- It is a preventable and treatable disease with some significant <u>extrapulmonary</u> manifestations.
 - Skeletal muscle dysfunction
 - Weight loss
 - Cardiovascular disease
 - Depression and Fatigue
 - Osteoporosis

Interaction between pulmonary and extrapulmonary factors

Targets of Exercise Training

- Improving aerobic function of ambulation muscles
- Reducing ventilatory requirement and respiratory rate during exercise
- Prolonging expiration time
- Reducing dynamic hyperinflation and dyspnea

Casaburi et al. N Engl J Med 2009

Content Rehabilitation Program

• Exercise Training

- Endurance exercise to improve cardiorespiratory fitness
- Resistance training to improve muscular strength and endurance (peripheral and respiratory muscles)
- Supplemental interventions during exercise training
 - Oxygen
 - Heliox
- Breathing exercises
- Occupational therapy
- Nutritional advise
- Psychological support
- Patient-education / self-management (inactivity)

Rehabilitation, the evidence: Exercise tolerance

Exercise tolerance: Weighted mean difference and IQR

Adapted fromTroosters AJRCCM 2005

Rehabilitation, the evidence

Lacasse Eura Medicophys 2007 (Cochrane)

Rehabilitation, the evidence: Health care resources

	Controls 41		Rehabilitation		
Patients admitted n Hospital admissions			40		NS
Resp	1.9	1.4	1.4	1.3	*
All	2.2	1.5	1.7	1.1	*
Days spent in hosp					
Resp	18.1	19.3	9.4	10.2	2 *
	21.0	20.7	10.4	9.7	*
Days per admission	9:	± 7.6	6 :	± 3.4	0.1

Rehabilitation: the evidence

Evidence from systematic review of meta-analysis of randomised controlled trials (level la)

- Improvements in exercise tolerance
- Clinically relevant improvement in health related quality of life (HRQoL).

Evidence from at least one RCT(level lb)

- Reductions in number of days spent in hospital
- Pulmonary rehabilitation is cost effective

Exercise training, the core of rehabilitation

How do we train patients with severe airflow obstruction, dynamic hyperinflation and complaints of dyspnea on exertion?

Knowing exercise limitations to guide training

How to train the ventilatory limited patient ?

- Improve the lung function / maximum ventilatory capacity
- Reduce the ventilatory needs
 - Increase the delivery
 - Reduce the demand

Improve lung function

Casaburi et al Chest 2005

Kesten J COPD 2008

Improve maximal voluntary ventilation

HeliOx

Eves AJRCCM 2006

Training at higher intensity

Eves Chest 2009

Lung Transplantation

		1yPost-LTX n=22		Healthy n=30	
Gender	# / #	12 / 10		18 / 12	
Age	yrs	59 5		58 6	
BMI	kg/m²	23 ± 4		25 ± 4	
FEV ₁	%pred	79 ± 18*		116 ± 18	
Q-Force	Nm	100 ± 36*	-40%	164 ± 41	
MEP	cm H₂O	159 ± 44*	-20%	193 ± 47	
MIP	cm H ₂ O	-76 ± 48	-20%	-97 ± 53	
Handgrip	kgF	36 ± 16	-15%	42 ± 10	
6MWD	m	483 ± 66*	-30%	690 ± 83	
Wmax	%pred	74 ± 22*	-60%	182 ± 57	

Langer et al. Journal of Heart and Lung Transplantation 2009

Study Design RCT Exercise Training after LTX

Baseline Characteristics

	Post-LTX			
	Training (n=	15) Control	(n=13)	
Male / Female	8 / 7	7 /	6	
Early acute rejection (yes / no)	6 / 7	3 /	9	
SLTX / SSLTX	1 / 14	3 /	10	
Diagnosis COPD / ILD	12 / 3	11 /	2	
Age	56 ± 4	56 ±	: 7	
BMI (kg/m²)	20,7 ± 4,6	6 21,6 ±	: 4,2	
FEV _{1,} (% pred)	72 ± 18	74 :	16	

Exercise Training

• 3 sessions per week

Results

How to train the ventilatory limited patient ?

- Improve the lung function / maximum ventilatory capacity
- Reduce the ventilatory needs
 - Increase the delivery
 - Reduce the demand

Training at higher intensity

Emtner AJRCCM 2003

How to train the ventilatory limited patient ?

- Improve the lung function / maximum ventilatory capacity
- Reduce the ventilatory needs
 - Increase the delivery
 - Reduce the demand

- Enhance the stress to the muscle for a given VO2 (walking vs cycling)

- Enhance the stress to the muscle for a given VO2 (walking vs cycling)
- Reduce the amount of muscle mass at work (resistance training, NMES).

- Enhance the stress to the muscle for a given VO2
 (walking vs cycling)
 Reduce the amount of muscle
 - mass at work (resistance training, NMES, single leg)

Single Leg Exercise

Dolmage Chest 2008

Single leg exercise

Dolmage et al Chest 2006

Single leg training

30 min of conventional cycling training versus single leg cycling (15 min each leg) 3 times per week 7 weeks

FEV1 37 and 40% pred

- Enhance the stress to the muscle for a given VO2
- Reduce the amount of muscle mass at work
- Shorten the bouts of exercise to keep ventilation lower than needed in steady state (interval training)
 Slow oxygen uptake (ventilatory) kinetics : your friend in pulmonary rehab...

Interval exercise, often more realistic

Sabapathy Thorax 2004

Conclusions

• Pulmonary rehabilitation works: 'GRADE A'-level of evidence

• Exercise training can be fine-tuned to the exercise limitations of patients

 Several options available for ventilatory limited patients

Increase Ventilatory Capacity:

Bronchodilators Heliox

High intensity Peripheral Muscle Training

Exercise training

Reduce Ventilatory Requirements:

O₂ supplementation Small muscle mass Short intervals

High intensity Peripheral Muscle Training

One-leg exercise Interval training Resistance training

Thank you for your attention

Greetings from the Leuven Pulmonary Rehabilitation team