Les techniques invasives et minimalement invasives dans le staging du cancer bronchopulmonaire

V. Ninane, Hôpital Saint-Pierre, Bruxelles, Belgique
Invasive Mediastinal Staging

- **Purpose:** to exclude
 - Involvement of mediastinal **contralateral side**
 - Extensive involvement of the **ipsilateral side**
 - **Medical management**

- **Before PET introduction**
 - Nearly all cases (low performance of CT scan)
 - Or enlarged lymph nodes on CT scan

- **After PET introduction**
 - Positive hot spots (inflammatory processes)
 - Additional situations (PET + N1 tumors, mediastinal lymph nodes > 16 mm on CT scan, low SUV tumors, central tumors)

Survival prognostic factors for N2 disease

- **Favourable**
 - Complete resection
 - One-level metastasis
 - cN0-N1
 - T1-T2N2
 - Intranodal microscopic metastasis
 - Without subcarinal nodal involvement
 - T < 20 mm

- **Unfavourable**
 - Incomplete resection
 - Multi-level metastasis
 - Radiological N2 disease
 - T3-T4N2
 - Extranodal expansion
 - Number
 - Subcarinal node involvement
 - T > 50 mm

Invasive Mediastinal Staging

- **Purpose:** to exclude
 - Involvement of mediastinal **contralateral side**
 - **Extensive** involvement of the **ipsilateral side**
 - **Medical management**

- **Before PET introduction**
 - Nearly all cases (low performance of CT scan)
 - Or enlarged lymph nodes on CT scan

- **After PET introduction**
 - Positive hot spots in N2/N3 zones (inflammatory processes)
 - Additional situations (PET + N1 tumors, mediastinal lymph nodes > 16 mm on CT scan, low SUV tumors, central tumors)

Surgical mediastinal staging procedures

- **Cervical mediastinoscopy** (+/- extended mediastinoscopy)
- **Anterior mediastinotomy** (Chamberlain)
- **Video-mediastinoscopy**
- **Thoracoscopic staging**
Cervical mediastinoscopy

- Usually under general anesthesia
- Morbidity (2%) and mortality (0.08%)
- Stations 2R, 2L, 4R, 4L, anterior 7, pretracheal 1 and 3
- Videomediastinoscopy
 - Better visualization
 - More extensive sampling (including posterior 7), even complete dissection
 - Improvement in sensitivity and false negative rates
Accuracy of standard cervical mediastinoscopic biopsies in LC

<table>
<thead>
<tr>
<th>Source</th>
<th>Years</th>
<th>No of patients</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>FP</th>
<th>FN</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 papers</td>
<td>83-03</td>
<td>6505</td>
<td>78</td>
<td>100</td>
<td>0</td>
<td>11</td>
<td>39</td>
</tr>
</tbody>
</table>

Cervical Mediastinoscopy in LC patients

<table>
<thead>
<tr>
<th>Studies</th>
<th>Patients Nb</th>
<th>Patient type</th>
<th>Sensitivity, %</th>
<th>Specificity, %</th>
<th>FP %</th>
<th>FN %</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>5118</td>
<td>c I-III</td>
<td>82</td>
<td>100</td>
<td>0</td>
<td>10</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>1029</td>
<td>c II-III</td>
<td>82</td>
<td>100</td>
<td>0</td>
<td>13</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>358</td>
<td>c I</td>
<td>42</td>
<td>100</td>
<td>0</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>6505</td>
<td></td>
<td>78</td>
<td>100</td>
<td>0</td>
<td>11</td>
<td>39</td>
</tr>
</tbody>
</table>

Comparison of characteristics of invasive tests

<table>
<thead>
<tr>
<th>Tests</th>
<th>Sensitivity %</th>
<th>Specificity %</th>
<th>FP rate %</th>
<th>FN rate %</th>
<th>Patient population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medscopy</td>
<td>81</td>
<td>100</td>
<td>0</td>
<td>9</td>
<td>cN0-N2</td>
</tr>
<tr>
<td>TTNA</td>
<td>91</td>
<td>100</td>
<td>0</td>
<td>22</td>
<td>cN2</td>
</tr>
<tr>
<td>EUS-NA</td>
<td>88</td>
<td>91</td>
<td>2</td>
<td>23</td>
<td>cN2</td>
</tr>
<tr>
<td>TBNA</td>
<td>76</td>
<td>96</td>
<td>0</td>
<td>29</td>
<td>cN2</td>
</tr>
</tbody>
</table>

Mediastinoscopy is the gold standard!

Detterbeck et al. Chest 2003;123:167S-175S
Guidelines: invasive intrathoracic staging

|-----------------------------------|-----------|-----------|-----------|-----------|
| Mediastinal sampling if enlarged LN (> 1 cm) | ● Extensive infiltration: TTNA or EUS-NA or TBNA
● CT enlarged discrete LN: mediastinoscopy
● PET + LN: mediastinoscopy
● CT normal LN: mediastinoscopy
● PET – LN: mediastinoscopy | Biopsy if enlarged LN (>1cm) on CT
(even PET -)
Or PET + LN | Histo/cytological sampling if enlarged LN (>1cm) on CT
Or PET + LN (PET - enlarged LN should not be controlled) | ● Extensive infiltration: radiographic assessment
● CT enlarged discrete LN (PET + or -): invasive or minimally invasive
● Central tumor or N1: mediastinoscopy (needles 2nd choice)
● Peripheral stage I tumor and PET + mediastinum: mediastinoscopy (needles 2nd choice) |
Ultrasound puncture bronchoscope

- Convex probe with a frequency of 7.5 MHz
 - Linear transducer that scans parallel to the insertion direction of bronchoscope
 - Contact with/without balloon inflated with saline

- Ultrasound scanner

- Doppler mode

- Bronchoscope: outer diameter of 6.7 mm, direction of view is 30° toward oblique, channel diameter of 2.0 mm

- Dedicated 22-gauge needle
EBUS-EUS

- Outpatient basis; 20-30 min
 - Conscious sedation (iv midazolam)
 - EBUS : anaesthesia of the airways
 - O₂ (2 L/min; nasal prongs)
 - Transcutaneous hemoglobin saturation and cardiac rhythm monitoring
- NB : EBUS under general anaesthesia in some centers
EBUS-EUS complementarity
Technical aspects EUS/EBUS

- Standardized order of examination and sampling
 - **Examination**: from distally to proximally
 - EUS: left adrenal gland and liver lobe
 - All accessible mediastinal lymph nodes
 - EBUS: also N1 stations in a diagnostic+staging strategy
 - Detection of lymph nodes down to a size of 2-3 mm
 - Shape, size, demarcation and echo pattern not accurate enough for distinction benign-malignant
 - **Sampling**: because of the risk of contamination
 - from N3 to N2 stations
 - Also
 - EUS: left adrenal gland
 - EBUS: N1 or the tumor at the end of the procedure, for diagnostic purpose only
Technical aspects : sampling

- Accessible lymph node for puncture: short diameter ≥ 5 mm
- Optimal number of aspirations per lymph node station, if ROSE not used
 - EBUS-TBNA: 3
 - EUS-FNA: 4

Technical aspects

- **Cytopathological specimens**
 - in some cases, tissue cores

- **Results**: positive (tumor cells), negative (lymphocytes or lymphoid tissue), inadequate (blood only, bronchial epithelial cells, cartilage)

- **ROSE** (rapid on-site sample evaluation)
 - Shortening the procedure
EBUS-TBNA: Tolerance and Complications

- **Tolerance under local anaesthesia**
 - Cough is frequent (active smokers, open tracheostomy)

- **Complications**
 - Only mild bleeding
 - Pneumothorax (1/∼500 examinations)
EBUS-TBNA needles

Contamination score and Number of passes

P = 0.035

V Gounant et al. Provisionally accepted
EBUS-TBNA rinses

Rinsing solutions after successive introduction and withdrawal of the stylet

Mineral analysis by energy dispersive X ray

V Gounant et al. Provisionally accepted
EBUS-TBNA for mediastinal staging

<table>
<thead>
<tr>
<th>Authors</th>
<th>Nb patients</th>
<th>Enrolment</th>
<th>Selection</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krasnik 2003</td>
<td>11</td>
<td>ND</td>
<td>CT or PET +</td>
<td>100.0</td>
<td>100</td>
<td>90.9</td>
</tr>
<tr>
<td>Rintoul 2005</td>
<td>20</td>
<td>ND</td>
<td>CT +</td>
<td>84.6</td>
<td>100</td>
<td>72.2</td>
</tr>
<tr>
<td>Vilman 2005</td>
<td>33</td>
<td>ND</td>
<td>Unselected</td>
<td>85.0</td>
<td>100</td>
<td>71.4</td>
</tr>
<tr>
<td>Yasufuku 2005</td>
<td>108</td>
<td>Consecutive</td>
<td>CT +</td>
<td>94.1</td>
<td>100</td>
<td>63.0</td>
</tr>
<tr>
<td>Herth 2006</td>
<td>502</td>
<td>Consecutive</td>
<td>CT +</td>
<td>94.0</td>
<td>100</td>
<td>99.2</td>
</tr>
<tr>
<td>Vincent 2008</td>
<td>152</td>
<td>Consecutive</td>
<td>CT or PET +</td>
<td>99.1</td>
<td>100</td>
<td>78.1</td>
</tr>
<tr>
<td>Wallace 2008</td>
<td>138</td>
<td>Consecutive</td>
<td>Unselected</td>
<td>69.0</td>
<td>100</td>
<td>30.4</td>
</tr>
<tr>
<td>Herth 2008</td>
<td>97</td>
<td>Consecutive</td>
<td>normal CT-PET</td>
<td>88.9</td>
<td>100</td>
<td>9.3</td>
</tr>
<tr>
<td>Lee 2008</td>
<td>102</td>
<td>ND</td>
<td>CT 5-20mm</td>
<td>93.8</td>
<td>100</td>
<td>33.7</td>
</tr>
<tr>
<td>Bauwens 2008</td>
<td>106</td>
<td>Consecutive</td>
<td>PET +</td>
<td>95.1</td>
<td>100</td>
<td>67.8</td>
</tr>
<tr>
<td>Ernst 2008</td>
<td>66</td>
<td>Consecutive</td>
<td>CT +</td>
<td>88.1</td>
<td>100</td>
<td>89.4</td>
</tr>
</tbody>
</table>
Sensitivity and 1-specificity of EUS-FNA in the evaluation of lymph node metastasis (N2/N3). Error bars = 95% CI.
<table>
<thead>
<tr>
<th></th>
<th>Patient Nb</th>
<th>Sensitivity %</th>
<th>Specificity %</th>
<th>FP %</th>
<th>FN %</th>
<th>Prevalence %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meds</td>
<td>6505</td>
<td>78</td>
<td>100</td>
<td>0</td>
<td>11</td>
<td>39</td>
</tr>
<tr>
<td>EUS</td>
<td>1003</td>
<td>84</td>
<td>99.5</td>
<td>0.7</td>
<td>19</td>
<td>61</td>
</tr>
<tr>
<td>EBUS</td>
<td>918</td>
<td>90</td>
<td>100</td>
<td>0</td>
<td>20</td>
<td>68</td>
</tr>
</tbody>
</table>

Guidelines: invasive intrathoracic staging

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mediastinal sampling if enlarged LN (> 1 cm)</td>
<td>• Extensive infiltration: TTNA or EUS-NA or TBNA
• CT enlarged discrete LN: mediastinoscopy
• PET + LN: mediastinoscopy
• CT normal LN: mediastinoscopy
• PET – LN: mediastinoscopy</td>
<td>Biopsy if enlarged LN (>1cm) on CT (even PET -)
Or PET + LN</td>
<td>Histo/cytological sampling if enlarged LN (>1cm) on CT
Or PET + LN (PET - enlarged LN should not be controlled)</td>
<td>• Extensive infiltration: radiographic assessment
• CT enlarged discrete LN (PET + or -): invasive or minimally invasive
• Central tumor or N1: mediastinoscopy (needles 2nd choice)
• Peripheral stage I tumor and PET + mediastinum: mediastinoscopy (needles 2nd choice)</td>
</tr>
</tbody>
</table>
CT scan

- Negative (N0)
 - T1N0 Sq CC
 - Surgical treatment
 - All others
 - EBUS/EUS (FNA)
 - -
 - +
 - Medscopy
 - -
 - +

- Positive (N2-N3)
 - Tissue confirmation
 - a
 - b
 - Multimodality treatment

EBUS/EUS: minimally invasive procedure (a) but lower negative predictive value than mediastinoscopy (b)

PET/PET-CT

Negative (N0)

Tissue confirmation

Medscopy

EBUS/EUS (FNA)

Surgical treatment

Multimodal treatment

Positive (N2-N3)

a : PET N1 +; central tumors; low tumoral FDG uptake; LN size \geq 1.6 cm

EBUS/EUS : minimally invasive procedure (b) but lower negative predictive value than Medscopy (c)

Staging: Particular situations

- **Extensive infiltration of the mediastinum**
 - Radiographic assessment only (grade 2C ACCP 2007)
 - Invasive procedure sometimes required for diagnosis (blinded TBNA during the first bronchoscopy)

- **PET N1, Central tumor, Tumor with low SUV and with normal PET mediastinum**
 - Invasive staging required
 - EBUS-EUS not the first choice
 - Low prevalence of N2 and low NPV
<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Mediastinal infiltration</td>
<td>Tumor mass within the mediastinum; LN cannot be distinguished or measured</td>
</tr>
<tr>
<td>B</td>
<td>Enlarged discrete mediastinal LN</td>
<td>LN ≥ 1 cm (short axis on transversal CT)</td>
</tr>
<tr>
<td>C</td>
<td>Clinical stage II or central stage I</td>
<td>Normal mediastinal LN (<1 cm) but enlarged N1 nodes or central tumor</td>
</tr>
<tr>
<td>D</td>
<td>Peripheral clinical stage I tumor</td>
<td>Normal mediastinal and N1 nodes and peripheral tumor</td>
</tr>
</tbody>
</table>

EBUS-TBNA for mediastinal staging

<table>
<thead>
<tr>
<th>Authors</th>
<th>Nb patients</th>
<th>Enrolment</th>
<th>Selection</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krasnik 2003</td>
<td>11</td>
<td>ND</td>
<td>CT or PET +</td>
<td>100.0</td>
<td>100</td>
<td>90.9</td>
</tr>
<tr>
<td>Rintoul 2005</td>
<td>20</td>
<td>ND</td>
<td>CT +</td>
<td>84.6</td>
<td>100</td>
<td>72.2</td>
</tr>
<tr>
<td>Vilman 2005</td>
<td>33</td>
<td>ND</td>
<td>Unselected</td>
<td>85.0</td>
<td>100</td>
<td>71.4</td>
</tr>
<tr>
<td>Yasufuku 2005</td>
<td>108</td>
<td>Consecutive</td>
<td>CT +</td>
<td>94.1</td>
<td>100</td>
<td>63.0</td>
</tr>
<tr>
<td>Herth 2006</td>
<td>502</td>
<td>Consecutive</td>
<td>CT +</td>
<td>94.0</td>
<td>100</td>
<td>99.2</td>
</tr>
<tr>
<td>Vincent 2008</td>
<td>152</td>
<td>Consecutive</td>
<td>CT or PET +</td>
<td>99.1</td>
<td>100</td>
<td>78.1</td>
</tr>
<tr>
<td>Wallace 2008</td>
<td>138</td>
<td>Consecutive</td>
<td>Unselected</td>
<td>69.0</td>
<td>100</td>
<td>30.4</td>
</tr>
<tr>
<td>Herth 2008</td>
<td>97</td>
<td>Consecutive</td>
<td>normal CT-PET</td>
<td>88.9</td>
<td>100</td>
<td>9.3</td>
</tr>
<tr>
<td>Lee 2008</td>
<td>102</td>
<td>ND</td>
<td>CT 5-20mm</td>
<td>93.8</td>
<td>100</td>
<td>33.7</td>
</tr>
<tr>
<td>Bauwens 2008</td>
<td>106</td>
<td>Consecutive</td>
<td>PET +</td>
<td>95.1</td>
<td>100</td>
<td>67.8</td>
</tr>
<tr>
<td>Ernst 2008</td>
<td>66</td>
<td>Consecutive</td>
<td>CT +</td>
<td>88.1</td>
<td>100</td>
<td>89.4</td>
</tr>
</tbody>
</table>
Impact on therapeutical strategy

- Prevent ~ 60-70 % of scheduled mediastinoscopies
- N upstaging, in comparison with mediastinoscopy alone
 - EUS + mediastinoscopy improves staging and reduces the number of futile thoracotomies
 - Combined EBUS + EUS equal to or superior to mediastinoscopy?

Waiting for the results of the ASTER STUDY: randomized clinical trial comparing complete endoscopic ultrasound staging with surgical staging (current standard of care)
EBUS-EUS complementarity
Three belgian centers 2007-2009

94 SCLC diagnosed using EBUS

- Preceding non-diagnostic standard bronchoscopy
- 37 (39%) peripheral tumors and 20 (21%) cases without primary tumours (cTX)
- TX-4 N0-3 M1 : 35 (37%)
- TX-4 N0-1 M0 : 8 (9%)
- FDG-PET before diagnosis : 58 (62%)

Manuscript in preparation
Only downstaged patients seem to benefit from multimodality treatment including surgery

- Role of linear EBUS/EUS for restaging?
Surgical restaging

<table>
<thead>
<tr>
<th></th>
<th>yc-med</th>
<th>Remediationoscopy</th>
<th>VATS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lardinois 2003</td>
<td>0.81</td>
<td>0.7</td>
<td>0.29</td>
</tr>
<tr>
<td>Mateu-Navarro 2000</td>
<td>0.7</td>
<td>0.71</td>
<td>0.75</td>
</tr>
<tr>
<td>Van Schil 2003</td>
<td>0.71</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>Stamatis 2003</td>
<td>0.78</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>De Leyn 2006</td>
<td>0.75</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Jaklitsch 2005</td>
<td>0.75</td>
<td>0.75</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sens</th>
<th>Acc</th>
<th>NPV</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.91</td>
<td>0.8</td>
<td>0.58</td>
<td>24</td>
</tr>
<tr>
<td>0.91</td>
<td>0.8</td>
<td>0.75</td>
<td>24</td>
</tr>
<tr>
<td>0.91</td>
<td>0.8</td>
<td>0.75</td>
<td>32</td>
</tr>
<tr>
<td>0.91</td>
<td>0.8</td>
<td>0.75</td>
<td>155</td>
</tr>
<tr>
<td>0.91</td>
<td>0.8</td>
<td>0.75</td>
<td>30</td>
</tr>
<tr>
<td>0.91</td>
<td>0.8</td>
<td>0.75</td>
<td>70</td>
</tr>
</tbody>
</table>
EUS-FNA in mediastinal restaging (initial N2)

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Nb of patients</th>
<th>EUS-FNA diagnostic value</th>
<th>PPV</th>
<th>NPV</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annema 2003</td>
<td>19 PR 14 SD 5</td>
<td></td>
<td>100%</td>
<td>67%</td>
<td>75%</td>
<td>100%</td>
<td>83%</td>
</tr>
<tr>
<td>Varadarajulu 2006</td>
<td>14</td>
<td></td>
<td>100%</td>
<td>86%</td>
<td>86%</td>
<td>100%</td>
<td>86%</td>
</tr>
</tbody>
</table>
EBUS-TBNA in mediastinal restaging (tissue-proven IIIA-N2)

<table>
<thead>
<tr>
<th>Number</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Negative predictive value</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>124</td>
<td>76%</td>
<td>100%</td>
<td>20%</td>
<td>77%</td>
</tr>
<tr>
<td>(89/117)</td>
<td></td>
<td></td>
<td>(7/35)</td>
<td></td>
</tr>
</tbody>
</table>

CT restaging: 66 PR; 58 SD

Initial and post-induction invasive mediastinal staging

<table>
<thead>
<tr>
<th>Initial</th>
<th>Post-induction</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mediastinoscopy</td>
<td>Mediastinoscopy</td>
<td>Remediatedoscopy technically difficult;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accuracy decreased</td>
</tr>
<tr>
<td>Mediastinoscopy</td>
<td>EBUS/EUS</td>
<td>False negative EBUS/EUS</td>
</tr>
<tr>
<td>EBUS/EUS</td>
<td>EBUS/EUS</td>
<td>incomplete EBUS/EUS</td>
</tr>
<tr>
<td>EBUS/EUS</td>
<td>Mediastinoscopy</td>
<td>incomplete staging by EBUS/EUS</td>
</tr>
</tbody>
</table>

False negative EBUS/EUS incomplete staging by EBUS/EUS
General conclusions: invasive mediastinal staging of NSCLC

- **Mediastinoscopy** is the gold standard
- **Initial staging**
 - EBUS and EUS are safe and accurate and will reduce the need for mediastinoscopy as well as cost
 - Indications: enlarged LN and/or FDG-PET positive LN
 - Combined EBUS and EUS may be a superior approach
- **Restaging**: the best combination (staging-restaging) needs to be assessed