

Outline

- Deposition of (nano) particles on mucosal epithelial cells and their effects on drug absorption
- * Pulmonary clearance of (Nano-)particles
 - mucociliary clearance
 - macrophage clearance
- Cellular delivery of telomerase inhibitors by polymeric nanocarriers for the treatment of lung cancer

What needs to be considered when studing the interaction of aerosolized (nano)PARTICLES

- rather than SOLUTES -

with pulmonary epithelial barriers ?

Outline

- Deposition of (nano) particles on mucosal epithelial cells and their effects on drug absorption
- Pulmonary clearance of (Nano-)Particles
 - mucociliary clearance
 - macrophage clearance
- Cellular delivery of telomerase inhibitors by polymeric nanocarriers for the treatment of lung cancer

Chitosan			
	44,0 ± 2,4	8*10 ⁻¹⁰	69,9
Phospholipid	$-40,9 \pm 5,3$	6*10 ⁻¹¹	82,17
Poly-Maleic-Oleic Acid	-21,4 ±,02	1*10 ⁻¹³	66,81
Oleic Acid		3*10 ⁻¹²	
Starch	-1,1 ±0,4	7*10 ⁻¹³	24,2
Hydrophobic int	teractions	Electrostatic interac	tions

	 Theoretical mass concentration / mL of SP-A for complete coverage of all particles: 0.0426 mg SP-A 			
Surface modification	Absolute bound amount of SP-A [mg/mL]	"Coverage factor"		
Chitosan	0.186±0.033	4,36		
Phospholipid	0.232±0.069	5,45		
Poly-Maleic-Oleic Acid	0.193±0.066	4,53		
Starch	0.118±0.019	2,77		
=> Multiple NP-to-p	e layers of SP-A on ea particle for rotein ratio of 2:1 ??	ch		

