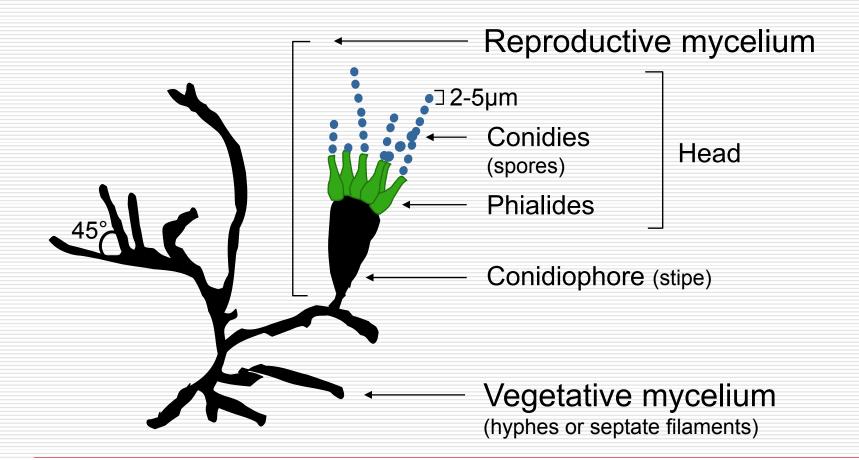
Managing chronic pulmonary aspergillosis infection

Jacques Cadranel Service de Pneumologie et Réanimation



Conflict of interest statement : J Cadranel

- Principal investigator of the VERTIGO trial on behalf of Pfizer France
- Paid for talks on behalf of Pfizer
- Travel grants from Pfizer

Aspergillosis in human

Aspergillus fumigatus anatomy

Aspergillosis in human Summary

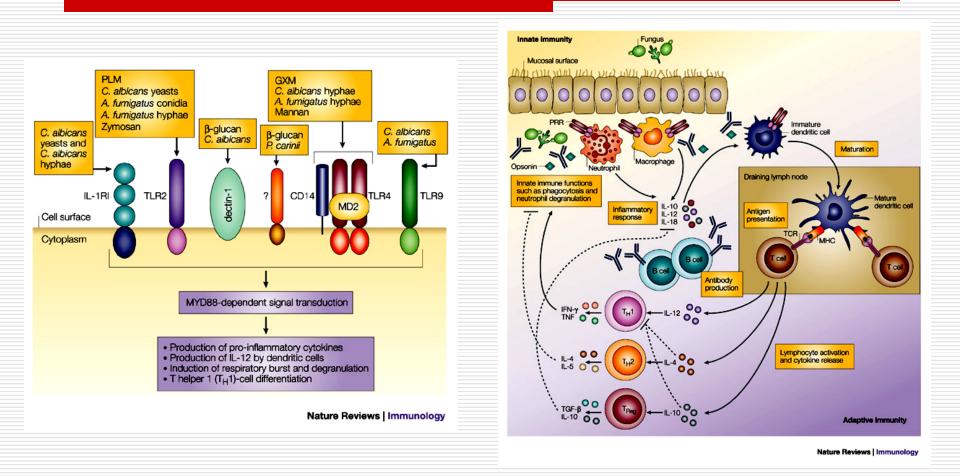
 Fungi (Ascomycetes) of the order of Plectomycetes, the family of Aspergillacea
Small percentage of the fungal flora (2%)
About 30 species pathogenic for humans
Aspergillus fumigatus (AF) responsible for 90% of cases, then A. flavus and A. Niger

Aspergillosis in human

Summary

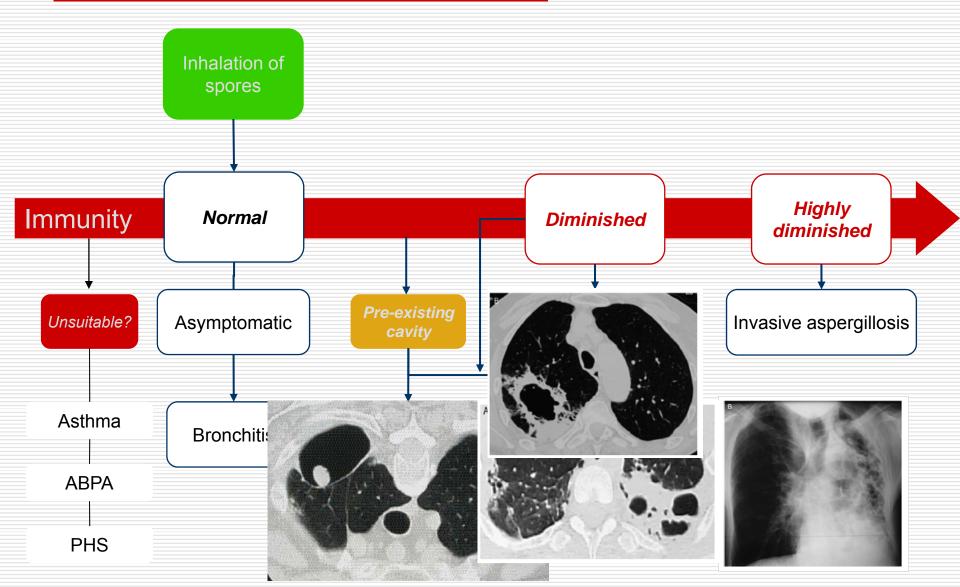
- Cosmopolitan proliferating on decaying organic matter (plants, cereals, air conditioners ...)
- Found in 50% of urban habitats
- Permanent in the atmosphere
 - with renewed automno-winter and during demolition work
 - in the environment: 1-20 spores/m3
- Pathogenicity factors of Aspergillus, factors related to the host

Bull Soc Franç Mycol Med 1985,14:81; Bull Soc Franç Mycol Med 1982, 11:363; Clinical Allergy 1984, 14:354; Pathol Biol 1994, 42:706.


Aspergillosis in human

Pathogenicity factors of Aspergillus

- Small spores (2-5µm): acute inhalation; growth at 37°C in wet
- Filament formation: embarrassment to phagocytosis
- Receptors to fibrinogen and laminin: adhesion to the matrix
- Production of proteases and toxins (fumigatoxine, fumagillin, haemolysin ...) responsible for shock, hemorrhage, necrosis and inhibition of cellular repair
- To exhaust host defenses (gliotoxin)


Infect Immun 1994, 62:2169; Biol Cell 1993, 77:201; Contrib Microbiol 1999,2:182; Clin Exp Allergy 2000, 30:476

Aspergillosis in human Pathogenicity factors related to the host

Nature Rev Immunol 2004, 4:11-24

Anatomical and clinical continuum

Sarceno J, Chest 1997; Soubani, Chest 2002; Denning D, CID 2003

Pulmonary aspergillosis

Diagnostic methods

- Mycological diagnosis samples: sputum, fibroaspiration, BAL, biopsy ...
 - Direct examination:
 - size of the filaments, number and branching angle, aspect of the head
 - Cultures:
 - Sabouraud medium, several tubes, 37°C for at least 48 hours to 15 days, special media for identification
 - □ results even more valuable than:
 - sample obtained on "protected" specimen
 - repeatidly positive on direct examination
 - growing rapidly in culture to the "bottom of the tube »

Absence of other pathogens +++

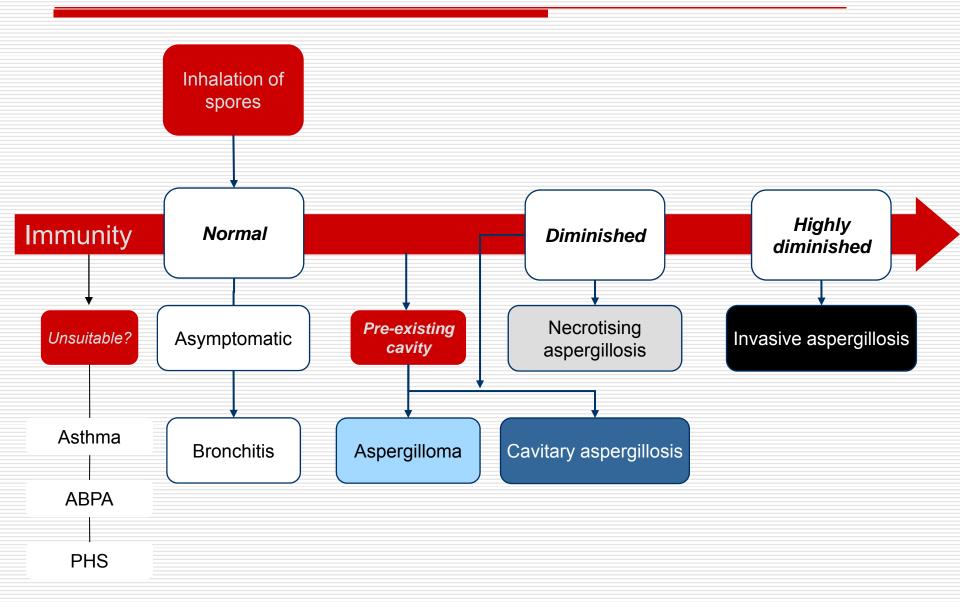
Pulmonary aspergillosis

Diagnostic methods

Biological and immunological diagnosis

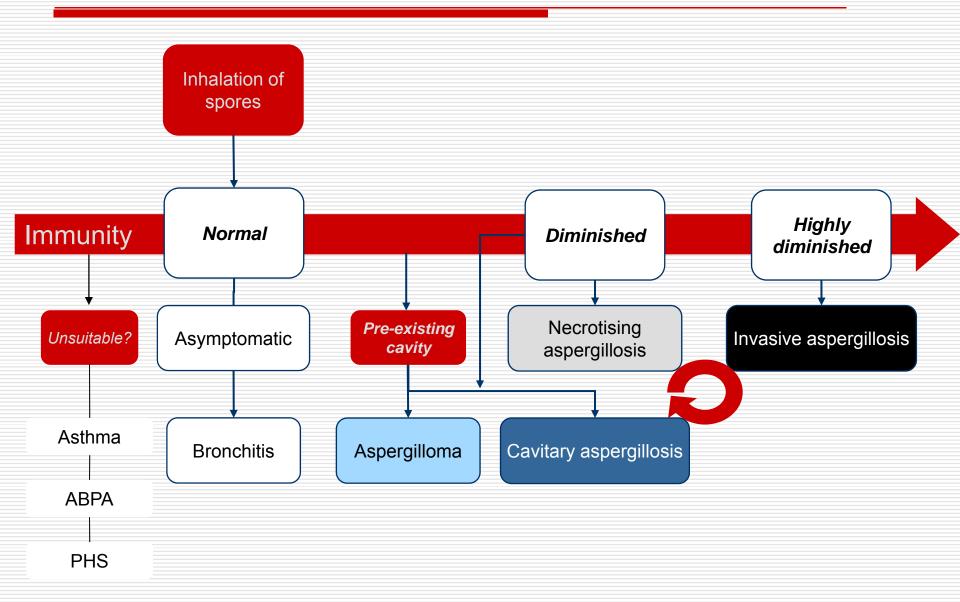
- antigenemia (invasive aspergillosis):
 - different techniques,
 - highly specific (> 90%), sensitivity 70% (interest of repeated samples); diagnostic value depends on the center
 - can be applied to LBA or products of secretion
- PCR diagnosis?
- specific IgE (RIA, ELISA):
 - indicator of an immediate hypersensitivity
 - □ interest of associated skin testing
 - specific IgG assay:
 - □ screening by indirect hemagglutination (> 1 / 160);
 - \Box confirmed by immunoprecipitation (\geq 3 arcs catalase),
 - indicator tissue infection
 - interest of associated skin testing

Pulmonary aspergillus infection

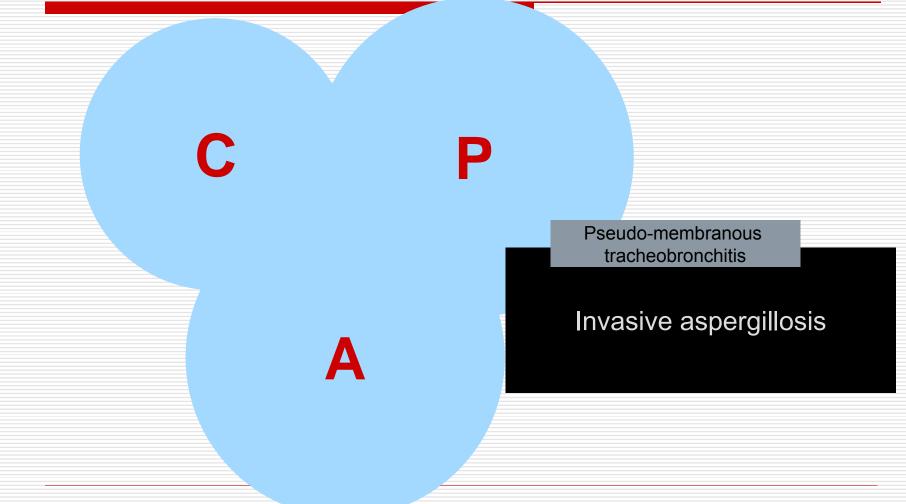

Diagnostic methods: depending on the situation

	Aspergilloma	ССРА	CNPA	Invasion
CT-scan				
- mycetoma	+++	++	+	-
- pneumonia	-	++	++	++
- necrosis	-	+	++	++
Direct exam	-	±	++	++
Culture	±	++	++	++
Antigenemia	l –	-	±	++
lgG	++	+++	++	-

Chronic pulmonary aspergillosis


- Numerous clinical, radiological, anatomical and pathological entities
 - Simple pulmonary aspergilloma
 - Complex pulmonary aspergilloma
 - Chronic, fibrosing or pleural cavitary pulmonary aspergillosis
 - Semi-invasive pulmonary aspergillosis
 - Chronic necrotising pulmonary aspergillosis
 - Pseudomembranous tracheobronchitis caused by Asp.
 - Invasive pulmonary aspergillosis

Anatomical and clinical continuum


Sarceno J, Chest 1997; Soubani, Chest 2002; Denning D, CID 2003

Anatomical and clinical continuum

Sarceno J, Chest 1997; Soubani, Chest 2002; Denning D, CID 2003

Chronic pulmonary aspergillosis

Sarceno J, Chest 1997; Soubani, Chest Loud, Jenning D, CID 2003

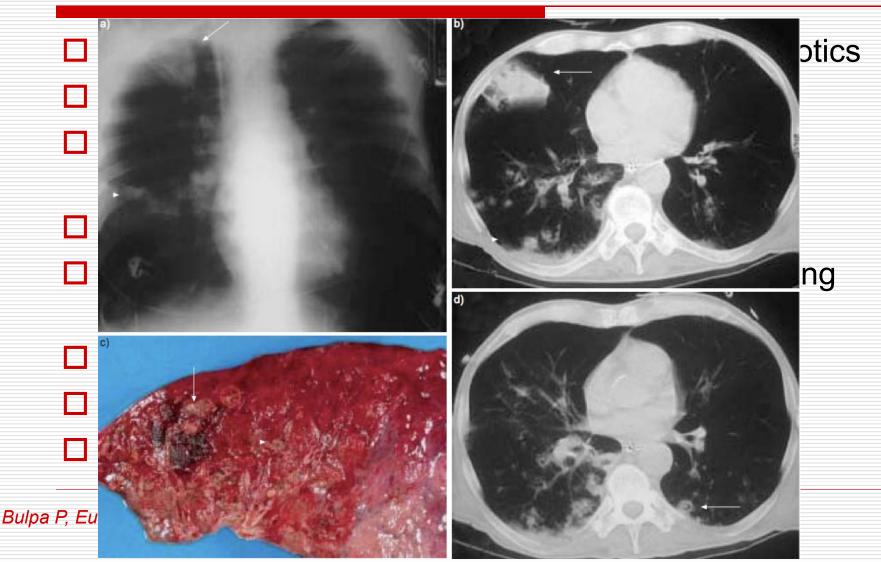
Chronic pulmonary aspergillosis

simple aspergilloma

Chronic Necrotising Pulmonary Aspergillosis

semi-invasive aspergillosis

Pseudo-membranous tracheobronchitis


Chronic Cavitary Pulmonary Aspergillosis

complex aspergilloma chronic fibrosing/pleural aspergillosis

Invasive aspergillosis

Sarceno J, Chest 1997; Soubani, Chest 2002; Denning D, CID 2003

Invasive aspergillosis in COPD A new clinical entity?

CPA, an anatomical and clinical continuum

- Underlying lung disease
 - active or sequel tuberculosis
 - bronchiectasis, COPD
 - sarcoidosis
- Comorbidities
 - smoking
 - alcohol, diabetes, malnutrition
- Prolonged exposure to steroids
 - inhaled
 - oral, small doses

Underlying lung disease

	Underlying disease (n=237)	Patients (n=126)	Literature
Tuberculosis	21 (16.7%)	20 (15.9%)	31 to 81%
Non MTB	20 (15.9%)	18 (14.3%)	
COPD/emphysema	42 (33.3%)	12 (9.5%)	42 to 56%
Pneumothorax (± emphysema)	21 (16.7%)	12 (9.5%)	12 to 17%
ABPA (± asthma)	18 (14.3%)	15 (11.9%)	12%
Asthma (± hypersensitivy)	13 (10.3%)	3 (2.4%)	5.6 to 12%
Sarcoidosis	9 (7.1%)	9 (7.1%)	12 to 17%
Rheumatoid arthritis	5 (4%)	4 (3.2%)	2.4%
Lung cancer survivor	13 (10.3%)	12 (9.5%)	8 to 10%
Thoracic surgery	18 (14.3%)	6 (4.8%)	-
Pneumonia	28 (22.2%)	10 (7.9%)	9.2 to 12%
Others	19 (8.2%)	5 (3.2%)	-

Adapted from Smith NL, Eur Respir J 2010

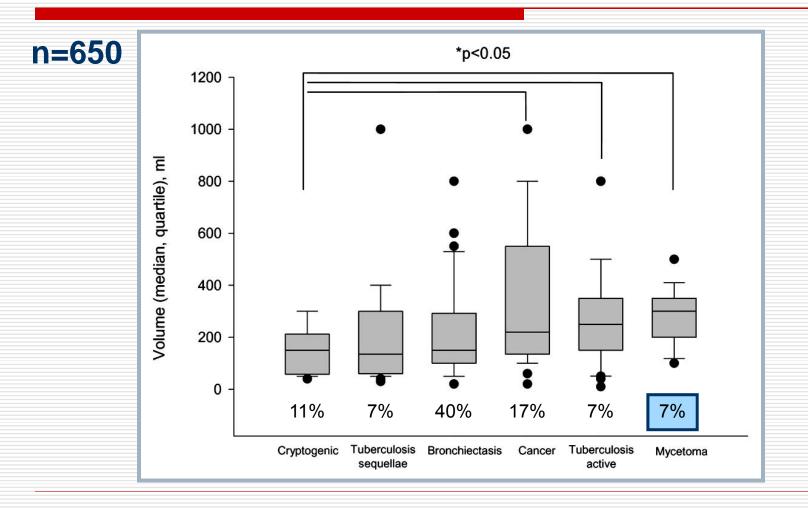
Underlying lung disease

	Underlying disease (n=237)	Patients (n=126)	Literature
Tuberculosis	21 (16.7%)	20 (15.9%)	31 to 81%
Non MTB	20 (15.9%)	18 (14.3%)	
COPD/emphysema	42 (33.3%)	12 (9.5%)	42 to 56%
Pneumothorax (± emphysema)	21 (16.7%)	12 (9.5%)	12 to 17%
ABPA (± asthma)	18 (14.3%)	15 (11.9%)	12%
Asthma (± hypersensitivy)	13 (10.3%)	3 (2.4%)	5.6 to 12%
Sarcoidosis	9 (7.1%)	9 (7.1%)	12 to 17%
Rheumatoid arthritis	5 (4%)	4 (3.2%)	2.4%
Lung cancer survivor	13 (10.3%)	12 (9.5%)	8 to 10%
Thoracic surgery	18 (14.3%)	6 (4.8%)	-
Pneumonia	28 (22.2%)	10 (7.9%)	9.2 to 12%
Others	19 (8.2%)	5 (3.2%)	-

Adapted from Smith NL, Eur Respir J 2010

Lung disease, comorbidities and steroids

	Saraceno (1997)	Nam (2010)	Camuset (2007)	Vertigo (2010)
Type of aspergillosis	CNPA (n=59)	CPA (n=43)	CNPA (n=15)	CNPA (n=19)
			CCPA (n=9)	CCPA (n=22)
Lung disease	78%	95%	100%	92%
COPD	76%	14%	42% (FEV1/VC=49%)	44%
Tuberculosis/mycobacteriosis	20%	93%	54%	27%
Bronchiectasis	-	-	-	15%
Sarcoidosis	-	-	17%	-
Comorbidities	64%	40%	33%	41%
Alcohol	17%	-	12.5%	10%
Diabetes	7%	12%	8%	5%
Malnutrition	64%	35%	-	BMI = 17 (13-39)
Corticosteroids	42%	-	50%	37%
Inhaled route	-	-	-	29%
Oral route	-	19%	-	15%


Saraceno J, Chest 1997; Camuset J, Chest 2007; Nam HS, Int J Infect Dis 2010; Cadranel J, for the VERTIGO group, CPLF 2010

General symptoms and haemoptysis

	Chen (1997)	Nam (2003)	Camuset (2007)	Saraceno (1997)
Type of aspergillosis	Aspergilloma (n=72)	CPA (n=43)	CNPA (n=15) CCPA (n=9)	CNPA (n=59)
Cough	18 (25%)	19 (79%)	19 (79%)	33 (56%)
Expectoration	-	19 (79%)	19 (79%)	26 (44%)
Dyspnoea	4 (5.6%)	21 (87%)	21 (87%)	4 (7%)
Chest pain	3 (4%)	8 (33%)	8 (33%)	15 (25%)
Haemoptysis	61 (91%)	9 (37%)	9 (37%)	4 (7%)
Fever (T°C ≥ 38)	4 (5.6%)	7 (29%)	7 (29%)	40 (68%)

Chen J, Thorax 1997; Nam HS, Int J Infect Dis 2010; Camuset J, Chest 2007; Saraceno J, Chest 1997

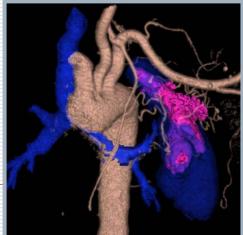
Recurrent and severe haemoptysis

Farthoukh M, Respir Research 2005

Therapeutic strategy

Three main objectives

- To limit further destruction of lung tissue
- To prevent life-threatening haemoptysis
- To improve quality of life


Therapeutic strategy

- Treatment of underlying condition, comorbidities and haemoptysis
 - Specific treatments for underlying lung disease and comorbidities
 - Respiratory rehabilitation and re-nutrition
 - Discontinuation or reduction of corticosteroids
 - Treatment of haemoptysis by endovascular procedure
- Treatment of aspergillosis
 - Curative treatment = surgery
 - eradicate aspergillosis
 - avoid relapse?
 - Palliative treatment
 - antifungal treatment, systemic >>>> local

Endovascular treatment

- Major systemic hypervascularisation
 - Bronchial and non-bronchial
 - Erosion of pulmonary blood vessels (arteries and veins)
- Importance of CT angiography
 - Etiological diagnosis
 - Localisation of bleeding associated with bronchoscopy
 - Mapping of vessels involved in hypervascularisation
 - Pin-pointing the mechanism
 - bronchial arterial hypervascularisation = systemic arterial embolization
 - false arteriovenous aneuvrysm = pulmonary vaso-occlusion

Khalil A, AJR 2007

Endovascular treatment

Efficiency of systemic arterial embolization

Series	n/N	1 month relapse	Late relapse
Ulfacker (1985)	8/64	0/8	4/8 (2 deaths)
Corr P (2006)	12/12	1/12	ND
Khalil A (2008)	18/470	4/14 <i>(1 BAE)</i>	3/5
		2/14 <i>(2 BAE)</i>	

"n" aspergilloses/"N" haemoptyses

Ulfacker R, Radiology 1985; Corr P, Cardiovasc Intervent Radiol 2006; Khalil A, AJR 2010

Surgical treatment

- Avoid haemoptysis and loco-regional extension, permanent cure, improve survival
- No randomised study
- Numerous possible procedures:
 - Iobectomy, pulmonectomy, atypical resection, cavernostomy, thoracoplasty, etc.

Surgical treatment

- □ Mortality 1 to >15%
- Morbidity 9 to 69% !!!
 - morbidity/mortality much lower with simple aspergilloma
 - primary morbidities and late mortality more likely linked to the underlying lung disease responsible and comorbidities
- □ Need for strict preoperative evaluation:
 - PFT, DLCO, V/Q scintigraphy, echocardiography, VO2 max
 - depending on comorbidities and the respiratory disease responsible

Therapeutic approach, aspergilloma

Simple aspergilloma

Spontaneous lysis in 7 to 10% of cases

(BTSA, Tubercle 1970; Hammerman KJ, Chest 1973)

- Clinical/radiological stabilisation in 25% of cases
 - No proof of efficiency of antifungal treatments by systemic route

Amphotericin B (Hammerman KJ, Am Rev Respir Dis 1974)

□ Itraconazole (Campbell JH, Thorax 1991)

Therapeutic abstention...

Therapeutic approach, aspergilloma

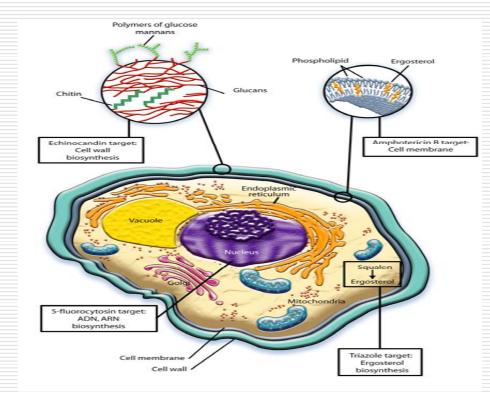
- Simple aspergilloma
 - Loco-regional complications and

- intermediate forms progressing to other aspergillus diseases in 65 to 75% of cases
- Unpredictable risk of severe (>30%) and fatal haemoptysis
- Indication for surgery...

Therapeutic approach, CCPA and CNPA

Chronic cavitary/necrotising aspergilloses

- Therapeutic strategy not codified
- No methodologically satisfactory study
- Place for surgery?
- Indication for systemic antifungal treatment? (potentially combined with surgery if it is possible)



Binder RE, Medicine 1982; Endo S, Ann Thorac Surg 2001

Antifungal treatments

Therapeutic classes

- Polyenes (IV, local?)
 - Amphotericin B deoxycholate
 - Liposomal amphotericin B
 - Amphotericin lipid complex
- Echinocandins (IV)
 - Caspofungin
 - Micafungin
- Triazoles (IV, oral)
 - Itraconazole
 - Voriconazole
 - Posaconazole

From Sanglard D. JIDIF: Optimed Ed. 2003: 29-45

Local antifungal treatment

- Injection of Ampho. B in the aspergillus cavity or in the bronchus draining the aspergilloma in inoperable patients
 - Control of haemoptysis
 - Disappearance of the aspergilloma and/or negative result on aspergillus serology in 2/3 cases
- Limits
 - Manual preparation of Ampho. B paste
 - Case series, single centre studies
 - non-controlled?; small number of patients?
 - Complications: pulmonary abscess and anaphylactic shock

Studies	Treatment	Туре	n	Efficiency	Comments
Denning Case series	amphotericin B	CPA	11	82%	Definition of efficiency ?
Nam Case series	amphotericin B	CNPA ?	4	All dead	-
lzumikawa Case series	micafungin ± other antifungal	ССРА	9	78%, "success at EOT"	Association with other antifungals in 5/9 4-week treatment (29-96 dys)
Kohno Prospective trial	micafungin <i>line</i> ?	CPA Aspergilloma CNPA	31 22 9	60%, "success at EOT" 55% 67%	Different response criteria for CNPA and aspergilloma Treatment duration: 13-56 dys
Khono 2 Prospective controlled trial	micafungin (vs voriconazole)	CPA	50/96	60% "success at 4 weeks"	Only 4-week treatment Very subjective criteria of evaluation

Denning D, Clin Infect Dis 2003; Nam HS, Int J Infect Dis 2010; Izumikawa K, Med Mycol 2007; Kohno S, Scand J Infect Dis 2004; Kohno S, J Infection 2010

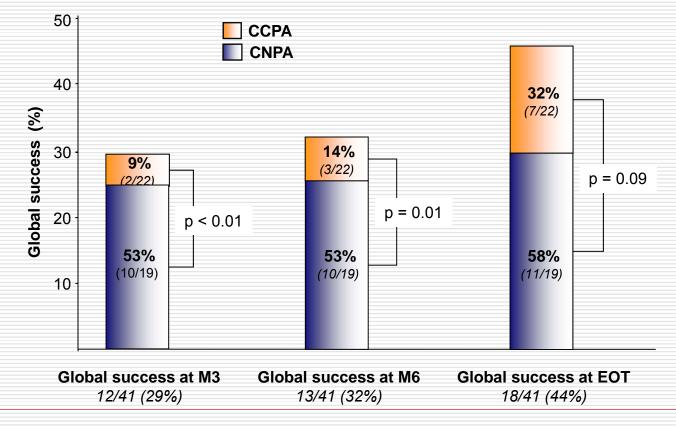
Studies	Treatment	Туре	n	Efficiency	Comments
De Beule Prospective trial	itraconazole >40% post ampho.	Aspergilloma CNPA	42 44	30% , radiological 66%, radiological	Diagnostic criteria? Dose, duration? Evaluation of efficacy? Endpoints?
Dupont Prospective trial	itraconazole line?	Aspergilloma CNPA	14 14	14% , radiological 50%, radiological	Evaluation of efficiency? Endpoints? Treatment duration: aspergilloma=7 months (2-13); CNPA=5.7 months (2-11.5)
Nam Case series	itraconazole line ?	CNPA ?	39	38%, "success after ≥ 3 mo"	Probably CPA rather than CNPA Treatment duration: 6 months (IQR=6-12)

Studies	Treatment	Туре	n	Efficiency	Comments
Felton Case series, National Referral Centre	posaconazole 28% post itra- or voriconazole 46% after toxicity	CPA	79	61%, "success at 6 mo."	Treatment duration: 7 mo. (1-11) for naive and 7.8 mo. (<1-53) for pre-treated ≈15% of patients need dose modification after evaluation of plasma [posa.]

Studies	Treatment	Туре	n	Efficiency	Comments
Jain Case series	voriconazole ≈100% post itra.	ССРА	11	64%, "clinical success at 3 mo."	No radiological evaluation
Sambatakou Prospective trial	voriconazole 27% post itra.	СРА	15	67%, "success at EOT"	Pos-hoc centralised review by <i>D Denning</i> Treatment duration: 3.6 months (<1-4)
Camuset Case series	voriconazole 46% post itra.	CPA CNPA CCPA	24 15 9	58%, "success at EOT" 67% 44%	Centralised review by 2 investigators Very stringent diagnostic criteria Treatment duration: 6.5 months (4-36) P=0.04, in favor of CNPA
Khono 2 Prospective controlled trial	voriconazole (vs micofungin)	CPA	46/96	59% "success at 4 weeks"	Only 4-week treatment Very subjective criteria of evaluation

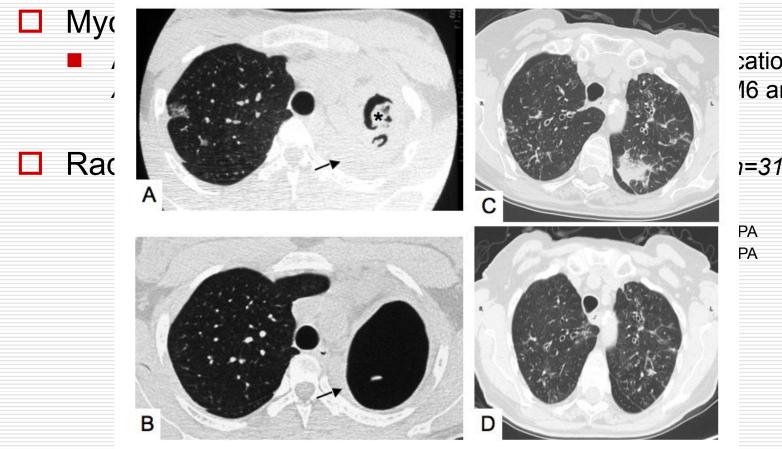
Jain LR, J Infect 2006; Sambatakou H, Am J Med 2006; Camuset J, Chest 2007; Saito Y, ICAAC, in proceedings 2009

Systemic antifungal treatment, oral


- Prospective, non-comparative, multicentre study
- Diagnostic criteria:
 - clinical+CT+mycological+serology
 - CNPA, n=19
 - CCPA, n=22
- No pre-treated patients
 - severe haemoptysis
 - eligible for surgery
 - prior systemic treatment
- Voriconazole
 - 200 mg x 2/d, 6 months
 - >6 months and <12 months</p>
 - duration: 8.3 months (<1-13.5)</p>

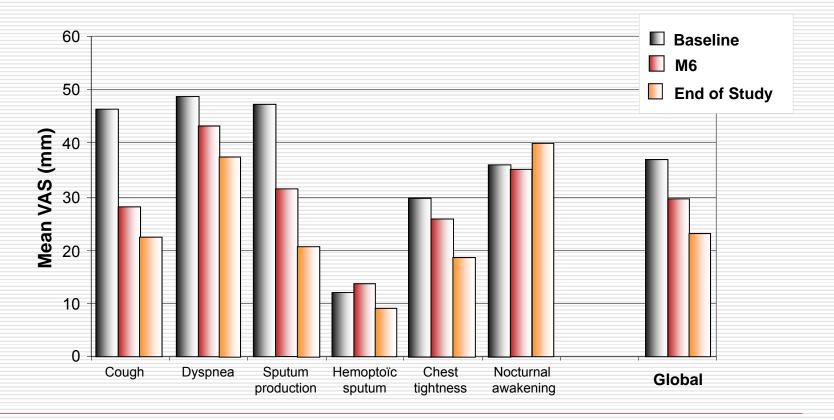
Endpoints

- clinical, radiological and mycological
- 3 months, 6 months, end of treatment
- centralised review by panel
- Objectives
 - primary:
 - CT improvement (>50%) + mycological eradication at 6 months > 30%
 - secondary:
 - radiological efficiency
 - quality of life and safety
 - relapse at 6 months post EOT
 - survival



Efficiency at different endpoints

Cadranel J, for the VERTIGO trial group


Systemic antifungal treatment, oral

1=31 patients)

Systemic antifungal treatment, oral

Quality of Life

Cadranel J, for the VERTIGO trial group

Systemic antifungal treatment, oral

Safety results

- Treatment related adverse events with a frequency greater than 5% (i.e. in at least 3 patients):
 - visual disturbances (21%),
 - photosensitivity reactions (19%),
 - blurred vision (12%),
 - constipation, vomiting, gamma-GT increased (10% each),
 - chills, decreased appetite, headache, insomnia (8% each)
 - vertigo, nausea, cholestasis, weight loss, anorexia (6% each)
- These side effects are consistent with the known adverse event profile of voriconazole

Overall survival (88%)

5 patients died during the study from underlying disease (bacterial pneumonia, pneumothorax, chronic respiratory insufficiency, ovarian cancer, septic shock.) None attributable to CPA.

According to guidelines from IDSA experts

Туре	Trea	tment	Comments
	Standard	Options	
Invasive aspergillosis	voriconazole	amphoB, caspo., mica., posa., itra.	
Aspergilloma	abstention or surgery	itraconazole or voriconazole	medical treatment?
Chronic necrotising aspergillosis	voriconazole	amphoB, caspo., mica., posa., itra.	prolonged oral treatment
Chronic cavitary aspergillosis	itraconazole or voriconazole	amphoB, caspo., mica., posa.	prolonged oral treatment surgery?

From Walsh T in IDSA Guidelines, Clin Infect Dis 2008

Managing chronic pulmonary aspergillosis infection

- Heterogeneous clinical entities
 - comorbidities ± pulmonary disease
 - pay attention to the association between COPD and steroids
- Surgery alone rarely possible
- Most often need a multidisciplinary approach:
 - surgeon, radiologist, functionalist, pneumologist...
 - impact of "booming" in antifungal armamentarium
 - efficiency of triazole particularly in necrotizing forms
 - therapeutic sequence to define
- Important morbidity/mortality
 - mainly due to comorbidities and underlying diseases