Sleep disordered breathing in patients with precapillary pulmonary hypertension (PH) PD Dr. Silvia Ulrich Somaini University Hospital of Zurich ### Agenda - Sleep apnea leading to PH - Obstructive - Hypoventilation - PH with sleep disordered breathing (SDB) - Pathophysiology and mechanisms - Prevalence - Potential treatment strategies ### Does Obstructive Sleep Apnea lead to PH? - Coccagna & Lonsdorfer 1972: catheters during PSG - Oscillations in PAP due to intrathoracic pressure swings - PAP highest immediate post apnea and in REM-sleep - PAP normalized in the morning awake - Marone 1989 & Schäfer 1998: catheters and esophageal pressure to assess transmural vascular pressure - Mildly increased PAP during sleep (SPAP 28 to 38 mmHg), changes significantly correlated to Δ SpO₂ - Guilleminault 1986: catheter in OSAS - Marked decrease in cardiac output during apnea (by 35%) Apnea episodes lead to mild temporary PH #### Obstructive Sleep Apnea leading to PH - Variations in transmural PAP <u>during OSA episodes</u> may be a consequences of multiple factors: - variation in intrathoracic pressure - variations in heart rate - variation in cardiac output - possibly variation in left heart filling pressure - But the major factor for transmural PAP increase during an OSA episodes seems to be: - Hypoxic Pulmonary Vasoconstriction (HPV) #### Apneas lead to mild temporary PH due to HPV #### Is permanent PH a feature of OSA? - Bradely 1985: 50 OSA patients: - Cor pulmonale only in 6 patients (12%) with daytime hypoventilation and obstructive ventilatory defect - Chaouat 1996: catheters in 220 OSA patients: - PH defined as mPAP > 20 mmHg found in 37 Pts (17%) - 24/37 daytime hypoxemia - 15/37 additional hypercapnia, mostly with additional obstructive or restrictive lung disease - no correlation of PAP with AHI The majority of OSA patients without significant daytime hypoxemia will not develop precapillary PH! #### **CPAP** treatment to improve PH in OSA? Sajkov AJRCCM 2002: prospective, uncontrolled, 22 patients with OSA, mean AHI 48/min, | N=22 | Before CPAP | After CPAP | |------------------|-------------|------------| | mPAP mmHg | 16.8 ± 1.2 | 13.9 ± 0.6 | | PVR dynes*s*cm-5 | 231 ± 88 | 186 ± 55 | Treatment of OSAS by CPAP is moderately effective in ameliorating pulmonary hemodynamics #### Does hypoventilation lead to PH? Kessler 2001: PH often found in Obesity -Hypoventilation Syndrome with concomitant daytime hypoxemia and hypercapnia - 26 patients, 59% PH - 23 concomitant OSA - Common in PH-clinic (Held M, ERS 2012) - 126 PH patients, 19 with OHS - mPAP 49mmHg, VO₂max 63 Watt - mPAP correlated to PaCO₂ # Therapy of Obesity Hypoventilation Syndrome Increase CPAP to eliminate obstructive apneas, hypopneas, and flow limitation S_{pO₂} persistently below 90% in the absence of obstructive apneas or hypopneas Switch to bi-level PAP and increase IPAP over the last CPAP pressure that eliminated obstructive apneas until $S_{pO_2} > 90\%$ Add supplemental oxygen if S_{pO_2} is persistently < 90% despite an IPAP – EPAP difference of 8–10 cm H_2O , or try AVAPS Weight-loss surgery or tracheostomy with or without mechanical ventilation and/or respiratory stimulants in patients who fail positive-airway-pressure therapy Non-invasive ventilation ameliorates pulmonary hemodynamics in small series ### Agenda - Sleep apnea leading to PH - Obstructive - Hypoventilation - PH with sleep disordered breathing (SDB) - Pathophysiology and mechanisms - Prevalence - Potential treatment strategies ### Sleep disordered breathing in PH – potential mechanisms - Hypoxemia in PH - pulmonary capillary bed ↓,V/Q- Mismatch - intrapulmonary Shunts - respiratory muscle weakness - Effect of Sleep on lung diseases - Respiratory drive ↓, airway stability ↓, ventilation stability ↓ → sleep disordered breathing Sleep worsens daytime hypoxemia and may lead to intermittent apnea or periodic breathing ### Sleep disordered breathing in PH – different manifestations - Nocturnal hypoxemia - Sleep apnea / Periodic Breathing / Cheyne-Stokes-Respiration • ### Nocturnal hypoxemia in PH - Rafanan Chest 2001: 13 IPAH-Pts (12♀) - Desaturators = pts with >10% of TST with SpO₂ <90% - 10 Patients (77%) - not associated with sleep apnea | Sleep Variable | Nondesaturators $(n = 3)$ | $\begin{array}{c} Desaturators \\ (n=10) \end{array}$ | p Value | |--|---------------------------|---|---------| | TST, min | 278.0 ± 50.6 | 302.7 ± 48.6 | 0.46 | | Sleep efficiency, % | 74.3 ± 14.2 | 76.1 ± 7.2 | 0.77 | | REM sleep, % | 14.0 ± 7.0 | 12.7 ± 5.2 | 0.73 | | Apnea index, apneas/h | 0.08 ± 0.13 | 1.04 ± 1.93 | 0.15 | | Hypopnea index,
hypopneas/h | 1.67 ± 2.08 | 4.45 ± 4.59 | 0.18 | | Apnea-hypopnea index,
apneas and
hypopneas/h | 1.75 ± 6.7 | 5.49 ± 9.2 | 0.28 | ^{*}Values given as mean ± SD, unless otherwise indicated. #### Nocturnal hypoxemia in PH - Minai Chest 2007: 43 Patients (36♀), 88% IPAH, 12% APAH - desaturators = pts with >10% of TST with SpO₂ <90%</p> - 30 desaturators (69.7%), only 1 sleep apnea - older - higher BNP, higher Hb - lower cardiac index on last RHC - desaturation in 6MWT: not good predictor of nocturnal hypoxemia - Resting daytime SpO₂ 95±3.4 # Nocturnal Hypoxemia in PH- very common even in preserved daytime SpO₂ 63 patients (68% female), 54% idiopathic, 30% CTEPH, 16% APAH | Data given in Numbers (%) | Non-Desaturators | Desaturators | Sustained Desaturators | |--|----------------------------|----------------|---------------------------| | Total number of patients (%) | 14 (22) | 49 (76) | 33 (52) | | Females | 9 (56) | 34 (71) | 21 (66) | | Age (years) | 65 (40;72) | 61 (53;71) | 61 (54;71) | | WHO functional class II / III / IV | 6/8/0 | 18 / 23 / 8 | 12 / 17 / 4 | | | (43 / 57 / 7) | (37 / 47 / 16) | (38 / 53 / 12) | | BMI (kg/m²) | 28 (26;29) | 26 (22;29) | 26 (23;28) | | Tricuspid pressure gradient (mmHg) | 43 (38;55) | 66 (66;50;83)* | 75 (58;89) ^{# §} | | NT-pro-BNP (ng/l, < 130) | 563 (240;1716) | 718 (206;1371) | 1048 (206;1689) | | 6 minute walking test (m) | 529 (385;568) | 450 (363;506) | 450 (367;516) | | Daytime resting SpO ₂ (%) | 96 (95;97) | 94 (92;96) | 93 (91;96)# | | Exercise SpO ₂ (%, end of 6MWT)) | 95 (89;97) | 87 (80;91)** | 86 (78;91)# § | | Mean desaturation during exercise (%) | -2 (-7;0) | -6 (-11;-2)* | -6 (-15;-2) | | Exercise Desaturators (≥ 4% & absolute <90%) | 5 (33) | 28 (58) | 19 (59) | | Mean nocturnal SpO ₂ (%) | 94 (93;95) | 88 (85;90)** | 86 (84;88)## § | | Oxygen desaturation index (ODI, events/h) | 2 (1;4) | 3 (1;9) | 3 (1;9) | | ODI >10 events/h | 0 | 10 (21) * | 6 (20) | | Apnea/hypopnea index (AHI, events/h)† | 9 (5;18) | 10 (6;19) | 10 (6;19) | | AHI >10 events/h [†] | 3 (38) | 13 (54) | 8 (50) | | Periodic breathing (PB, % time in bed)† | 5 (4;9) | 11 (4;13) | 12 (5;15) | | Patients with PB ≥10 % of time in bed [†] | 3 (38) | 12 (50) | 9 (56) | # Nocturnal Hypoxemia in PH- very common even in preserved daytime SpO₂ ### Nocturnal Hypoxemia in PH- correlation to tricuspid pressure gradient #### Nocturnal hypoxemia in PH - Summary - Very common - Daytime SpO₂ underestimates nocturnal hypoxemia - Nocturnal hypoxemia is correlated to hemodynamic disease severity - Nocturnal hypoxemia is common even in the absence of sleep disordered breathing Treatment of nocturnal hypoxemia in PH????? ### Sleep disordered breathing in left heart disease - CSR/CSA is very common in patients with left heart failure (33-45%, Javaheri 1995, Lofaso 1994) - CSR more prevalent if ejection fraction and VO₂ max are low - CSR/CSA in left heart failure associated with: - arrhythmias↑ - deterioration of LHF - worse prognosis - Quality of life ↓ CSR marker of severity in left heart disease ### Pathogenesis of CSR/CSA - Stimulation of sympathetic nerve activity → increase in blood pressure & catecholamines - Low cardiac output → prolonged blood circulation time - \rightarrow delayed sensing of blood gas changes \rightarrow oscillatory behavior \uparrow - Other potentially contributing factors: - impaired cardiac afferents - water salt balance - hormones involved in body fluids - increased left atrial pressure #### The vicious cycle of CSR/CSA Periodic loss of neural drive to respiratory muscles ### What about right heart failure in PH? # Sleep disordered breathing in right heart disease due to PH Schulz ERJ 2002: 6 out of 20 (30%) patients with PH had nocturnal CSR (PSG) Table 4. – Anthropometric data, lung function and haemodynamic parameters of the patients with (+) and without (-) periodic breathing (PB) | | PB + | PB - | p-value | |----------------------------|----------------|----------------|---------| | Patients n | 6 | 14 | | | Sex M:F n | 3:3 | 0:14 | < 0.01 | | Age yrs | 43 ± 3.6 | 45 ± 2.6 | NS | | BMI kg·m ⁻² | 21.5 ± 0.7 | 24.4 ± 1.4 | NS | | Pa,O ₂ kPa | 6.6 ± 0.9 | 9.1 ± 0.7 | < 0.05 | | Pa,CO ₂ kPa | 3.9 ± 0.2 | 3.9 ± 0.1 | NS | | FEV1 % pred | 91.5 ± 6.8 | 86.5 ± 3.7 | NS | | VC % pred | 90.8 ± 8.1 | 92.0 ± 3.4 | NS | | DL,co % pred | 57.1 ± 4.5 | 69.6 ± 3.5 | < 0.05 | | PAP mmHg | 63 ± 2.4 | 53 ± 3.7 | < 0.05 | | PVR dyn·s·cm ⁻⁵ | 1951±149 | 1119±134 | < 0.05 | | PCWP mmHg | 6 ± 0.4 | 5 ± 0.7 | NS | | CO L·min ⁻¹ | 2.39 ± 0.1 | 3.71 ± 0.3 | < 0.01 | | CI L·min·m ⁻² | 1.38 ± 0.1 | 2.21 ± 0.2 | < 0.01 | | RVEF % | 7 ± 0.8 | 20 ± 2.4 | < 0.01 | **CSR** associated with: - -worse hemodynamic - -lower DLCO - -lower PaO₂ ### Sleep disordered breathing in right heart disease due to PH - Schulz ERJ 2002: - 5 patients agreed to be re-examined under oxygen therapy (2l via nasal cannula): - 4 responded with almost complete resolution Fig. 2. – Effects of nasal oxygen administration on the apnoeal hypopnoea index (AHI) in five patients with primary pulmonary hypertension and periodic breathing. Data are presented as individual values and as mean \pm SEM before and after nasal oxygen (O₂). **: p< 0.01. Schulz Chest 2004: case-report of reversal of CSR after LTPL in a 56y old woman ### Sleep related breathing disorders in Zürich PH collective | 38 patients with PH | Numbers or median (quartiles) | |--|-------------------------------| | Females | 27 (71%) | | Age (years) | 61 (51-72) | | Mean pulmonary arterial pressure (mmHg)* | 43 (33-51) | | WHO functional class II / III / IV | 14 / 16 / 8 | | 6 minute walking distance (m) | 481 (429-550) | #### **Sleep studies** | Apnea/hypopnea index (AHI, events/h) - obstructive - central | 8 (4-19)
0 (0-0.03)
8 (4-16) | | |---|------------------------------------|--| | Time spent with CSR (% time in bed) | 8 (4-13) | | | SpO ₂ (%) | 90 (87-92) | | | Time spent with SpO ₂ < 90% (% time in bed) | 34 (3-78) | | | Patients with AHI > 10 /h (%) - obstructive AHI > 10/h (%) - central AHI > 10/h (%) | 45
10
40 | | | Patients with time spent with CSR > 10 % of time in bed (%) | 42 | | | Patients with time spent with SpO ₂ < 90% > 10% time in bed (%) | 68 | | ### Sleep related breathing disorders in Zürich PH collective ### Potential mechanisms of CSR/CSA in PH – in analogy to left heart failure (?) - <u>Circulation time:</u> delay in transport of blood to brain resp. carotid sensors (lung to ear time) - Crowell Am J Physiol 1956: large prolongation of circulation time necessary to receive CSR in only 30% Circulation time influences time of breathing cycle and length of hyperpneic episodes ### Potential mechanisms of CSR/CSA in PH – in analogy to left heart failure (?) - Hyperventilation with low PaCO₂ (below apneic threshold) - breathing with low CO₂ (2-3%) during sleep increases CSR - But: PaCO₂ alone is not crucial, e.g. liver cirrhosis patients with the same PaCO₂ do not have CSR Δ PaCO2 may be more important and the combination with other factors increased ventilatory response to CO₂ during exercise (VE/VCO₂) best correlation to CSR ### Potential mechanisms of CSR/CSA in PH – in analogy to left heart failure (?) - Hypoxemia: may promote instability due to a stimulating effect on carotid chemoreceptors - High altitude induces CSR - However, hypoxemia not mandatory to develop CSR in HF and oxygen therapy attenuates but not completely suppresses CSR - Arousal response: magnitude determines lengths of subsequent interruption of ventilation - Catecholamine hypersecretion: - Noradrenalin infusion increases ventilation - Important for self-perpetuating effect of CSR-CSA ### Treatment options for CSR in patients with PH The indication, type and benefits of potential treatments for CSR/CSA in PH are currently not known In lack of treatment strategies, it is not know whether screening PH for CSR is sensible - Extrapolating from left heart failure-associated CSR/CSA - nocturnal oxygen therapy (NOT) - Acetazolamide - non-invasive positive pressure ventilation via a mask may all be potentially effective ### Treatment of and sleep disordered breathing in PH - Main inclusion criteria: Patients with precapillary PH and sleep disordered breathing defined as: SpO2 < 90% and/or oxygen desaturation index > 10/h during ambulatory pulse oximetry - Main exclusion criteria: Wedge ≥15mmHg, significant lung disease, co-morbidities, not able to walk, - Actually: > 60 PH-patients screened, 23 patients actually includes ### Treatment of and sleep disordered breathing in PH ### Treatment of and sleep disordered breathing in PH - Primary Outcomes: - 6 minute walk distance - SF36 (1-week recall form) physical component - Secondary Outcomes: - vigilance, sleepiness, QoL (SF-36, MLHF, Camphor) - prevalence and severity of sleep disordered breathing - hemodynamics by echocardiography - changes in arterial and venous blood parameters - actimetry #### Results awaited soon #### Take Home Messages - OSA may lead to mild PH, significant PH only with concomitant diseases (which are not seldom!) - Nocturnal hypoxemia is very common in PH, underestimated by daytime measurements and associated with hemodynamic severity - SDB is common in severe PH, but not the only reason for nocturnal hypoxemia - Treatment strategies widely unknown