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Background and purpose: Delineation of organs at risk (OARs), such as the bladder, rectum and sigmoid,
plays an important role in the delivery of optimal absorbed dose to the target owing to the steep gradient
in high-dose rate brachytherapy (HDR-BT). In this work, we propose a deep convolutional neural
network-based approach for fast and reproducible auto-contouring of OARs in HDR-BT.
Materials and methods: Images of 113 patients with locally-advanced cervical cancer were utilized in this
study. We used ResU-Net deep convolutional neural network architecture, which uses long and short skip
connections to improve the feature extraction procedure and the accuracy of segmentation. Seventy-
three patients chosen randomly were used for training, 10 patients for validation, and 30 patients for test-
ing. Well established quantitative metrics, such as Dice similarity coefficient (DSC), Hausdorff distance
(HD), and average symmetric surface distance (ASSD), were used for evaluation.
Results: The DSC values for the test dataset were 95.7 ± 3.7%, 96.6 ± 1.5% and 92.2 ± 3.3% for the bladder,
rectum, and sigmoid, respectively. The HD values (mm) were 4.05 ± 5.17, 1.96 ± 2.19 and 3.15 ± 2.03 for
the bladder, rectum, and sigmoid, respectively. The ASSDs were 1.04 ± 0.97, 0.45 ± 0.09 and 0.79 ± 0.25 for
the bladder, rectum, and sigmoid, respectively.
Conclusion: The proposed deep convolutional neural network model achieved a good agreement between
the predicted and manually defined contours of OARs, thus improving the reproducibility of contouring in
brachytherapy workflow.

� 2021 Elsevier B.V. All rights reserved. Radiotherapy and Oncology xxx (2021) xxx–xxx
High-dose rate brachytherapy (HDR-BT) is one of the most
important treatment modalities for cervical cancers commonly
employed as a primary or boost treatment option. The delineation
of organs at risk (OARs), such as the bladder, rectum and sigmoid
affects the delivered dose to the target volume, which is an impor-
tant factor in high-dose rate brachytherapy owing to the high steep
dose gradient [1]. Moreover, there is limited time to perform the
whole planning process for both the radiation oncologist and
physicist from patient scanning to patient treatment. Recommen-
dations and guidelines have been published by Groupe Européen
de Curiethérapie (GEC) and the European Society for Radiotherapy
& Oncology (ESTRO) based on three-dimensional (3D) image-
guided treatment planning for organs delineation, applicator
reconstruction, prescribing and reporting [2–6]. Various studies
investigated the effect of uncertainties in organ delineation, which
consist of inter- and intra-observer variability in dosimetric
parameters, such as the maximum dose to 2 cm3 (D2cc) of OARs
[1,7,8]. Hellebust et al. reported 5–8% inter-observer variability
based on MR images [7], while Saarnak et al. observed 10–11%
based-on CT images for the bladder and rectum [1].

Recently, a number of approaches have been proposed to
reduce inter- and intra-observer variability and processing time
using auto-segmentation techniques. This included atlas-based
auto-segmentation (ABAS) algorithms, which are widely used for
contouring of OARs [9–14]. ABAS algorithms use deformable image
registration to transform OAR contours from the atlas into the new
image. There is a lack of certainty in deformable registration algo-
rithms [15–17], particularly when intensity-based algorithms are
used. In addition, there are a number of issues that must be consid-
ered when using ABAS since there is a large variability in the pelvic
region owing to internal organs motion, bladder filling, and pres-
ence of gas in the rectum. These factors result in sub-optimal per-
formance of ABAS, in particular when a small number of atlases
(typically 10–20) are used [18–21]. Moreover, the presence of
applicators and CT markers for brachytherapy implantation tends
to decrease contrast to noise ratio and to increase high-density
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artifacts of CT images. ABAS algorithms usually exhibit sub-
optimal performance for small and thin OARs, such as swallowing
muscles [22].

Deep learning approaches have been recently applied to various
medical imaging modalities to increase the accuracy, reproducibil-
ity, and consistency of organ segmentation [23–28]. Various deep
learning algorithms, including recurrent neural networks (RNNs),
restricted residual networks (ResNets), encoder decoder, and con-
volutional neural networks (CNNs) were devised to address typical
challenges encountered in medical imaging research [29–32]. The
CNN model is one of the most common algorithms used in medical
imaging owing to its ability to extract the representative features
that enable to solve most challenging tasks. For specific applica-
tions, CNN models perform better than restricted Boltzmann
machines (RBMs) and stacked auto-encoders (SAEs) since the spa-
tial and structural information in the input images is directly
explored by CNN models while the inputs for RBMs and SAEs mod-
els should be in the form of vectors, wherein structural information
is missed or become difficult to detect. CNNmodels have been used
for image registration, auto-segmentation, and classification [33–
36]. Some studies used CNN in auto-contouring for regions, such
as the head and neck and lung cancers [37–39]. Van Dijk et al.
[34] compared deep learning-guided segmentation with ABAS for
delineation of OARs in head and neck cancers using an indepen-
dent validation dataset. ABAS failed to delineate the esophagus,
glottic area, and left and right regions of arytenoid. They concluded
that the deep learning model was superior to ABAS for twenty-two
OARs.

To the best of our knowledge, there is a limited number of stud-
ies reporting on the auto-segmentation of OARs in brachytherapy
treatment planning for cervical cancers [40]. The aim of this study
is to assess the feasibility of auto-segmentation using a deep learn-
ing approach for OARs delineation considering manual contouring
as standard of reference.
Materials and methods

Clinical dataset

Images of 113 patients with locally-advanced cervical cancer
collected between 2017 and 2019 were included in this study pro-
tocol. All patients were initially treated with external beam radia-
tion therapy (25 fractions, 2 Gy/fraction) and HDR-BT (3 fractions,
8.6 Gy/fraction) as a boost treatment. For each patient, Foley cathe-
ter was inserted into the bladder before each brachytherapy
implantation session. A combination of 1 cm3 contrast agent (Meg-
lumine compound, Amp VISIPAQUETM 320) and 6 cm3 normal sal-
ine was injected into the balloon of Foley catheter. The bladder was
filled with 120 cm3 of normal saline in the CT scanning room. All
patients were scanned on a volumetric HiSpeed Dual Slice CT scan-
ner (GE Healthcare, USA). Images were reconstructed with
512 � 512 matrix size and 3 mm slice thickness.

A radiation oncologist contoured the clinical target volume
(CTV), including the cervix, entire uterus, bilateral parametria,
upper half of vagina, and lymph nodes for external beam radiation
therapy and high risk (HR)-CTV and intermediate risk (IR)-CTV for
brachytherapy according to international guidelines and recom-
mendations. Relevant OARs included for both treatments were
the bladder, rectum, and sigmoid.
Data preprocessing

Binary masks of the OARs were created for each patient using
the 3D-Slicer software and RT structure data. All images were
cropped to body contour for computational cost reduction and
effective training process. All binary masks (supplemental Fig. 1)
232
were converted into one-hot vector with values ranging from 0
to 4 as indicated in supplemental Table 1.
Convolutional neural network model

A combination of ResNet [41] and Unet [42] model (called
ResU-Net) was developed to create a deeper convolutional neural
network for delineating OARs from CT images as depicted in sup-
plemental Fig. 2b. We also used a loss function formulated in Eq.
(1) based on a combination of binary cross-entropy and Dice sim-
ilarity coefficient (DSC) regulated with constant weighting factors.

Loss ¼ ½� 1
N

XN

i¼1

yi � log p yið Þð Þ þ ð1� yiÞ � logð1� p yið ÞÞ� �w

þ 1�wð Þ � ½� 2
P

ip yið ÞyiP
ip yið Þ þP

iyi
� ð1Þ

N stands for the number of classes, p(yi) is a probability distribution
of each channel, yi is ground truth and w is a weighting factor.
Details are provided in Supplemental material.
Training details

Seventy-three patients were used for training, 10 patients for
validation and 30 patients for testing (hold-out, unseen during
training). The training set was generated from randomly selected
2D slices with their corresponding binary masks. For the training,
2D image slices were used as input and all OARs corresponding
to slices used as ground truth. In the test phase, 2D slices of each
patient were used as input where the output was a 2D mask with
similar resolution that was converted to OARs contour using the
marching squares algorithm [43]. The same training procedure
was repeated for the standard Unet architecture considered as a
standard baseline model in medical image segmentation [44,45].
Then, the performance of the proposed model (ResU-Net) was
compared to the Unet model providing a baseline for an insightful
assessment of the results. Implementation details is provided in
Supplement material.
Performance measurement

The 30 patients were used to assess the performance of our pro-
posed model wherein 2D slices of CT images underwent segmenta-
tion slice-by-slice. Segmentation results from the CNN model and
manual contouring were quantitatively compared using DSC, haus-
dorff distance (HD), hausdorff distance 95th percentile (HD95%),
volume correlation (VC), average symmetric surface distance
(ASSD) and precision metrics. Details are provided in Supplement
material.
Dosimetric assessment

To assess the effect of predicted segmentation inaccuracies on
dose-volume parameters (such as D5cc, D2cc, D1cc, and D0.1 cc
for OARs, where Dxcc represents the minimum dose received
by � cm3 of an OAR), treatment plans based on manual segmenta-
tions were generated. Subsequently, the contours predicted from
ResU-net and Unet models were imported to the treatment plan-
ning system to calculate the abovementioned dose-volume param-
eters and to compare them with the corresponding parameters
derived from manual contouring. Plans were generated using Sagi-
Plan v2.0.2 (Eckert & Ziegler BEBIG Co., Germany) platform accord-
ing to the OARs dose constraint and prescribed dose for the target
(HR-CTV) recommended by the GEC-ESTRO, and the American
Brachytherapy Society (ABS). A prescription dose of 80–90 GyEQD2
(45–50 Gy as EBRT) was considered for the target lesion, equivalent
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to an absorbed dose of 2 Gy per fraction (EQD2) assuming a/b = 10,
and maximum dose (D2cc) of 90 GyEQD2, 75 GyEQD2, and 75
GyEQD2 to the bladder, rectum, and sigmoid OARs, respectively,
assuming a/b = 3.
Statistical analysis

Numbers v10 (Apple, Inc.) was used for statistical analyses,
where mean ± standard deviation (SD) or the median (minimum,
maximum, first-quartile (Q1), third-quartile (Q3)) were used for
presenting and summarizing the results. Interquartile range (IQR)
was also employed to find outliers in the HD, HD95% and ASSD
results for all organs which were equal to differences between
the third and first quartiles. 1.5 IQR was considered as the outlier
Fig. 1. Representative clinical example showing contours for a patient predicted by ResU
rectum and (g-i) the sigmoid. Blue color = predicted contour from ResU-Net, Yellow col

Table 1
Results of quantitative parameters for the segmentation of the three organs. All values ar

Model Organ Quantitative parameters

DSC (%) HD (mm) HD

ResU-Net Bladder 95.7 ± 3.7 4.05 ± 5.17 2.3
Rectum 96.6 ± 1.5 1.96 ± 2.19 1.4
Sigmoid 93.0 ± 3.3 3.15 ± 2.03 2.1

Unet Bladder 89.9 ± 8.3 5.06 ± 4.86 3.2
Rectum 91.7 ± 6.3 2.14 ± 2.45 1.6
Sigmoid 88.8 ± 7.9 3.58 ± 2.78 2.5

DSC = Dice similarity coefficient, HD = Hausdorff distance, HD95% = Hausdorff distance 95
There were no statistically differences between two models for all parameters.
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criteria. Independent two samples Student’s t-test with equal vari-
ance was used to compare the parameters considering p-
value < 0.05 as threshold for statistical significance.

Results

The training time of our ResU-Net CNN model and Unet were
approximately 5 and 6 h and the predicted organ contours could
be created within 1.5 and 1.6 seconds, respectively. Examples of
manual and predicted contours from ResU-Net and Unet models
for the bladder, rectum, and sigmoid are shown in Fig. 1. The
mean ± SD and the median, minimum, maximum, Q1 and Q3 of
DSC, HD, HD95%, ASSD, VC, precision from the ResU-Net and Unet
models are summarized in Tables 1 and 2, respectively, whereas
-Net and Unet models compared to manual contours for (a-c) the bladder, (d-f) the
or = predicted contour from Unet, Red color = manual contour.

e reported as mean ± SD.

95% (mm) ASSD (mm) VC Precision

0 ± 3.37 1.04 ± 0.97 0.976 ± 0.025 0.957 ± 0.065
2 ± 1.41 0.45 ± 0.09 0.975 ± 0.014 0.968 ± 0.036
0 ± 1.36 0.79 ± 0.25 0.963 ± 0.018 0.934 ± 0.039

1 ± 3.11 2.20 ± 1.14 0.913 ± 0.033 0.890 ± 0.039
4 ± 1.22 0.62 ± 0.24 0.909 ± 0.032 0.909 ± 0.021
7 ± 1.66 1.40 ± 0.31 0.851 ± 0.023 0.847 ± 0.026

th-percentile, ASSD = average symmetric surface distance, VC = volume correlation.



Table 2
Results of quantitative parameters for the segmentation of the three organs. All values are reported as median, minimum, maximum, Q1, Q3.

Model Organ Quantitative parameters

DSC (%) HD (mm) HD95% (mm) ASSD (mm) VC Precision

Median Min,
Max

Q1,
Q3

Median Min,
Max

Q1,
Q3

Median Min,
Max

Q1,
Q3

Median Min,
Max

Q1,
Q3

Median Min,
Max

Q1, Q3 Median Min,
Max

Q1, Q3

ResU-
Net

Bladder 97.4 81.6,
98.4

94.4,
97.8

3.51 2.20,
10.47

2.51,
4.86

1.64 1.29,
9.34

1.42,
1.94

0.71 0.51,
3.73

0.61,
0.86

0.989 0.897,
0.993

0.968,
0.990

0.966 0.859,
0.978

0.958,
0.971

Rectum 97.2 90.7,
98.3

95.8,
97.7

1.89 1.46,
2.81

1.72,
2.2

1.37 1.15,
1.88

1.20,
1.54

0.44 0.33,
0.65

0.40,
0.49

0.981 0.941,
0.988

0.965,
0.984

0.968 0.956,
0.978

0.963,
0.973

Sigmoid 94.1 83.9,
96.9

91.4,
95.2

2.82 2.05,
5.80

2.54,
3.54

1.84 1.20,
4.10

1.67,
2.20

0.73 0.52,
1.54

0.68,
0.85

0.967 0.913,
0.982

0.961,
0.976

0.935 0.897,
0.961

0.923,
0.944

Unet Bladder 91.0 81.0,
96.0

86.3,
93.0

3.88 2.23,
11.89

3.04,
6.48

2.63 1.44,
8.54

1.74,
4.28

1.78 0.52,
5.74

0.92,
3.37

0.915 0.850,
0.961

0.892,
0.940

0.905 0.822,
0.950

0.853,
0.920

Rectum 92.4 85.5,
96.4

89.2,
93.5

1.95 1.46,
3.24

1.8,
2.42

1.53 1.11,
2.74

1.37,
1.86

0.48 0.35,
1.48

0.41,
0.75

0.916 0.850,
0.951

0.883,
0.938

0.910 0.873,
0.942

0.890,
0.920

Sigmoid 88.8 83.6,
96.0

85.5,
91.8

3.49 2.29,
6.38

2.76,
4.25

2.40 1.21,
4.83

1.94,
2.99

1.50 0.68,
2.67

0.87,
1.74

0.852 0.810,
0.894

0.833,
0.863

0.845 0.810,
0.892

0.830,
0.868

DSC = Dice similarity coefficient, HD = Hausdorff distance, HD95% = Hausdorff distance 95th-percentile, ASSD = average symmetric surface distance, VC = volume correlation,
Min = minimum, Max = maximum. There were no statistically differences between two models for all parameters.

Fig. 2. Box plots of quantitative metrics for both ResU-Net and Unet models for the bladder, rectum and sigmoid. (a) DSC, (b) Hausdorff distance, (c) 95th percentile of
Hausdorff distance, (d) Average symmetry surface distance, (e) Volume correlation and (f) precision.

Deep learning-based auto-segmentation in brachytherapy
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Fig. 3. Plots of HD, HD95%, ASSD, DSC, VC, and precision for individual patients to depict the outlier subjects from ResU-Net model. (a), HD, HD95%, ASSD for the bladder, (b) HD,
HD95%, ASSD for the rectum, (c) HD, HD95%, ASSD for the sigmoid, (d) DSC for all OARs, (e) VC for all OARs and (f) precision for all OARs. DSC = Dice similarity coefficient,
HD = Hausdorff distance, HD95% = Hausdorff distance 95th-percentile, ASSD = average symmetric surface distance, VC = volume correlation.
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the boxplots are shown in Fig. 2. Overall, the predicted contours of
the rectum showed relatively higher accuracy for both models.
Outliers detected based on DSC, HD, HD95%, and ASSD parameters
235
were summarized in supplemental Table 2, Fig. 3 and supplemen-
tal Fig. 3. An example of erroneously predicted contours of one
patient for the bladder, rectum, and sigmoid are shown in Fig. 4.



Fig. 3 (continued)

Deep learning-based auto-segmentation in brachytherapy
The dosimetric accuracy of the ResU-Net and Unet models were
compared to results obtained from manually defined contours
used as reference (Table 3). The ResU-Net model achieved better
results compared to Unet model for all dosimetric parameters.
The differences between all dosimetric parameters for the sigmoid
were statistically significant between the two models (p-
value < 0.05). There is no proof of statistical difference for the blad-
der and rectum considering all dosimetric parameters.
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Discussion

The delineation of OARs is an important task in brachytherapy
of gynecological cancers. However, the process suffers from
inter- and intra-observer variability in organ delineations when
performed manually. The toxicity of OARs in brachytherapy of
gynecological cancer can be accurately predicted through the pre-
cise delineation of OARs. Auto-contouring of OARs is highly desired



Table 3
Results of dosimetric parameters and volume differences for the segmentation of the three organs. All values are reported as mean ± SD.

Model Quantitative parameters

Organ DD5cc (Gy) DD2cc (Gy) DD1cc (Gy) DV (cm3)

ResU-Net Bladder �0.383 ± 0.230 �0.499 ± 0.444 �0.757 ± 0.367 34.2 ± 7.5
Rectum 0.194 ± 0.111 0.321 ± 0.255 0.467 ± 0.268 16.7 ± 8.8
Sigmoid �0.322 ± 0.311 �0.467 ± 0.266 �0.521 ± 0.264 5.2 ± 3.7

Unet Bladder 0.498 ± 0.365 0.601 ± 0.211 0.888 ± 0.156 48.8 ± 10.1
Rectum 0.226 ± 0.204 0.383 ± 0.295 0.528 ± 0.244 20.5 ± 5.9
Sigmoid �0.489 ± 0.289 �0.622 ± 0.198 �0.789 ± 0.236 8.4 ± 3.8

There were statistically differences between the two models only for the sigmoid (p-value < 0.03).

Fig. 4. Representative example of erroneously predicted contours by ResU-Net and Unet models for (a-c) the bladder, (d-f) the rectum and (g-i) the sigmoid. Blue
color = predicted contour from ResU-Net, Yellow color = predicted contour from Unet, Red color = manual contour.
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in brachytherapy owing to the limited time between implantation
and treatment of patients and the need to minimize the variability
in organ delineations to avoid unwanted toxicity of OARs. Accurate
delineation of OARs allows for dose escalation in the target vol-
umes. This study set out to employ a deep convolutional neural
network for simultaneous multi-organ contouring in gynecological
brachytherapy. We realized that the contours predicted using
ResU-Net model had high overlap/agreement with manual con-
tours delineated by radiation oncologists and had better perfor-
mance and dosimetric accuracy compared to the standard Unet
model.

We observed that our ResU-Net model predicted OARs with a
DSC of 95.7% for the bladder, 96.6% for the rectum, and 93.0% for
the sigmoid while Unet achieved DSC of 89.9%, 91.7% and 88.8%,
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respectively. Among all OARs, the rectum presented the highest
DSC value and best performance for other quantitative metrics
for both ResU-Net and Unet models. Looking at CT images of test
patients, we found that the rectum had relatively constant volume
and shape among the different patients. The shape and volume of
the bladder were different between patients, more than the rectum
and sigmoid. However, consistent with the observations made by
Jamema et al. [46], the topographical changes in the sigmoid were
much more varied than other OARs. The dosimetric parameters
were calculated by performing planning on the auto-segmented
contours derived from both ResU-Net and Unet models. A good
agreement with the results obtained from the planning based on
manual contouring was observed. The dosimetric evaluation
revealed a similar trend to the one observed for segmentation,
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wherein the proposed ResUnet exhibited superior performance
over the conventional U-net model, leading to reduced estimated
absorbed dose errors within the OARs.

Kazemifar et al. [47] and Balagopal et al. [48] investigated
auto-segmentation of the prostate and OARs in male pelvic region
using deep learning algorithms. They employed CT images of 85
and 136 subjects and 2D U-Net and 2D + 3D U-Net models,
respectively, for automated segmentation of the bladder and rec-
tum to achieve DSC values of 95%, 92% and 95%, 84%, respectively.
In comparison to their results, our model showed a better DSC for
the rectum while the DSC of the bladder was almost the same.
This might be due to the presence of Foley catheter containing
contrast agent. The difference in the amount of contrast agent
mix with saline changed gray values of Foley catheter inside the
bladder among the different patients. Balloon of Foley catheter
must be fixed in the trigone area of the bladder after filling.
Imperfect fixing causes diversity in balloon location, which might
affect the results. Zhang et al. [40] used DSD-UNET and 3D UNET
for automated segmentation of HR-CTV and OARs on 91 CT
images of patients with cervical cancers. Our results showed supe-
rior performance considering the entire quantitative metrics
including DSC, Jaccard, and HD OARs segmentation such as blad-
der, rectum, and sigmoid, though we used a 2D deep learning
architecture. This might be due to the size of the training samples
(size of dataset) for the training of the model. For 2D models, each
2D slice of CT scan is considered one data or training sample. As
such, the number of training samples is dramatically higher in
2D training mode. However, in 3D training mode, each subject
(involving the whole organ/structure/target in multiple 2D slices)
is considered as a single training sample. In this regard, when the
training sample size is limited, the 2D model would be a better
option compared to 3D models which may perform suboptimally
owing to the limited/insufficient training samples. In this light,
the experiment conducted by Rigaud et al. [49] demonstrated that
a 2D model trained with DeepLab V3+ to segment cervix-uterus,
vagina, parametrium, bladder, rectum, sigmoid, femoral heads,
kidneys, spinal cord, and bowel bag from cervical cancer patients
performed comparably (and even better in some aspects) with
respect to the same model trained in 3D mode. In addition, the
3D models may fail to reach peak performance due to the need
for higher computational power and GPU memory to handle large
volumetric data. In this light, the 3D model tends to down-sample
the input images (either in the input layers or feature space)
which may skew the optimal performance of the model. More-
over, 3D models require dramatically larger number of trainable
parameters to properly encode the underlying features in volu-
metric data. A large number of trainable parameters complicates
the process of model optimization and might increase the risk
of overfitting. Thus, developing models in 3D mode is not neces-
sarily superior to their 2D counterparts. Contraries results were
observed in different studies when using 2D or 3D approaches
[49–54]. These results might demonstrate that choice of 2D or
3D approaches is task-specific and depend on the size of the train-
ing dataset as well as the complexity of the segmentation
problem.

Ayadi et al. [55] used ABAS in 26 prostate cancer patients. The
DSCs for the bladder and rectumwere 80% and 66%, which are sub-
stantially lower than those achieved in this work. This might be
related to the inherent characteristics of the ABAS algorithm,
which uses deformable image registration (DIR) to map structures
from atlases to patient’s CT images. Hernandez et al. [56] investi-
gated the efficiency of auto-segmentation software in the contour-
ing of OARs for brachytherapy of cervical cancers. They reported
DSCs of 83%, 79%, and 52% for the bladder, rectum, and sigmoid,
respectively. They also reported that patients with DSC values less
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than 90% had a median bladder volume about 10% smaller than the
atlas dataset. A small DSC (~52%) was observed for the sigmoid due
to the large topographic changes that the atlas-based method does
not properly cover owing to the limited number of atlases [57].
Some studies reported limitations of performance of DIR for cervi-
cal cancer brachytherapy due to applicator artifacts, presence of
gas in the rectum, presence of contrast agent in the bladder, large
changes in bladder filling and rectum between patients and atlases
and imperfection of algorithms, especially intensity-based regis-
tration [17,58–60].

We considered values above Q3 + 1.5IQR and below Q1-1.5IQR
as outlier data (Fig. 3 and supplemental Table 2). Two patients
(n = 10, 24) had the worst HD, HD95%, and ASSD for the bladder.
One patient (n = 18) had the worst HD, HD95%, and ASSD for the rec-
tum. Two patients (n = 12, 15) had the worst HD, HD95%, and ASSD
for the sigmoid. A potential explanation of these observations is
the gross errors in the predicted contour in one or few slices, an
example of which has been shown in Fig. 4. supplemental Table 2
shows that choosing outlier data based on each performance met-
ric is different. Besides, the Unet model exhibited fewer gross
errors (number of outliers) in the predicted contours compared
to the ResU-Net model, while the mean/median of all quantitative
metrics were inferior to those of the ResU-Net model. Most studies
reported on evaluation using one or few metrics (e.g. DSC, HD, and
HD95%), yet the validation of deep learning-guided auto-contouring
should include qualitative evaluation by experienced radiation
oncologists. We observed that most outliers occurred because
one or two slices had large discrepancy between predicted and
manual contours, which gave rise to noticeable drops in some
quantitative parameters.

This work inherently bears a number of limitations, including
uncertainty in OARs contours delineation in the training dataset,
the number of training and test datasets, single-center dataset
and the ensuing limited variability, variation in the type of applica-
tors (like tandem and ovoids, tandem and ring, tandem and ring
with needles, etc.) and variation in cancer types. The diversity of
cancer types, treatment volumes, CT scanner machines, image
acquisition protocol, and standards in OARs contouring hampered
meaningful comparison of our results with those reported in other
studies. Overall, the deep learning algorithm exhibited superior
performance compared to model-based, atlas-based, and
intensity-based DIR approaches [34,61,62].

In this work, we investigated the performance of deep learning-
assisted auto-contouring in gynecological cancer for patients trea-
ted with tandem and ovoids and multi-channel cylinders. The
material of tandem and ovoids were titanium while the material
of needles for multi-channel cylinders was plastic. Hence, CT mark-
ers (lead material) are needed to perform the reconstruction cor-
rectly. These CT markers amplify the artifacts visible on the
images (Fig. 4). The adopted methodology may not be suitable
for other situations where different techniques, such as interstitial
and intracavitary plus interstitial are used for treating patients. It is
more challenging for patients treated with interstitial brachyther-
apy since radiation oncologists commonly insert needles freehand
and then CT markers are used to carry out CT-based planning and
the reconstruction process correctly. It causes artifacts in the
image, especially when a high number of needles are used. In addi-
tion, the location and number of needles vary between patients.
Another challenge is related to the protocols used in the different
centers. Some centers use a contrast agent inside the bladder
instead of the balloon of Foley catheter to clear the boundary of
the bladder. Other centers employ rectal tube or contrast agent
inside the rectum. Therefore, a large dataset from different centers
using different techniques can make our model more robust to
improve performance further.
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Conclusion

Delineation of OARs in brachytherapy is an important compo-
nent of treatment planning that affects dose delivery to these
organs, as well as the target volume. However, manual delineation
is labor-intensive and time-consuming. In this work, a DCNN
model for CT-based OARs delineation in locally-advanced
brachytherapy planning was developed and evaluated. The perfor-
mance of the DCNN was assessed taking manual contour delin-
eated by an experienced radiation oncologist as standard of
reference. The quantitative results demonstrated that the DCNN
has a good agreement with the reference and could be used to seg-
ment the bladder, rectum, and sigmoid with high accuracy. How-
ever, outliers were observed in some cases. Yet, the DCCN can be
used to improve reproducibility in brachytherapy contouring and
speed-up the delineation of OARs.
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