Abstract—The aim of this work was to use sonographic image features as biomarker to assess the malignancy of thyroid nodules in patients recommended to FNA according to ACR TI-RADS guideline. Two hundred and ten patients with FNA test report were included in this study. Eighty Different quantitative radiomic features were extracted from sonographic images. Minimum Redundancy Maximum Relevance (MRMR) and logistic regression (LR) algorithms were used as feature selector and classifier, respectively. The evaluation of the models was performed using accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). AUC of MRMR feature selection algorithm and LR classifier was 0.87 (with accuracy of 0.74, sensitivity of 0.85 and specificity of 0.60). In the validation dataset, the AUC was 0.92 (with accuracy of 0.70, sensitivity of 0.81 and specificity of 0.58). The proposed model could be potentially used as alternative to FNA as non-invasive tools in clinical setting.

Index Terms—Radiomics, Ultrasound, Thyroid, Machine Learning

I. INTRODUCTION

Ultrasound is widely used for benign and malignant thyroid nodules differentiation as it is noninvasive, and cost-effective examination for target evaluation. According to the report of American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS) Committee, visual interpretation of this ultrasound based features are used for thyroid nodules scoring and sum of these factors used to determine probability for malignancy of thyroid nodules [1-3].

Radiomic features analysis is the transformation of medical images into quantitative and comprehensive features that enables high-dimentional data mining and could guide treatment decision and response prediction [4-7]. The ability of radiomic features and machine learning based analysis as accurate, reliable and non-invasive biomarker for cancer diagnosis, prognosis and response prediction have been investigated in previous studies [8-12]. Also, application of radiomics models in better characterizing thyroid nodules and in identifying nodules or tumors behavior is a nowadays important research topic [2, 11, 13, 14]. The aim of this study was to use the sonographic images features as biomarker to assess the malignancy of thyroid nodules in patients recommended to FNA according to ACR TI-RADS guideline.

II. MATERIALS AND METHODS

We performed a retrospective study of 210 patients (20 males and 55 females; mean age, 45.5 ±13.1 years; range, 22 to 76 years) selected randomly as training and 40 patients (20 males and 55 females; mean age, 45.5 ±13.1 years; range, 22 to 76 years) selected randomly as external validation dataset. Patients with TI-Rad 3, 4 and 5 according to TI-RADS report, underwent ultrasound-guided FNA and pathological examination reports were included in this study.

Segmentation of thyroid nodules on the gray scale ultrasound images was done by a seven years’ experience radiologist using the freely available LIFEx software (version v5.10, lifexsoft.org). Nodules were first reviewed and then were drawn on the US images. Various radiomic features from different feature sets including intensity, shape and texture-based features were extracted from gray scale ultrasound images. Extracted features included shape features (n=17)[14], intensity histogram features (n=9), intensity direct (n=19), neighbor intensity difference (n=5), co-occurrence matrix features (n=19), and gray level run-length matrix features (n=11) [15-18].

Prior model building, we applied MRMR (Max-Relevance and Min-Redundancy) Feature selection method. We used supervised logistic regression (LR) algorithm to building Radiomics model. For grid based hyperparameter tuning performed bootstrap method [19]. We used AUC, accuracy, sensitivity and specificity for models evaluation.
III. RESULT

Results of our machine learning based analysis using MRMR feature selection algorithm and LR classification model was shown in Fig. 1 for training and validation dataset. As was shown, in training data set, AUC of MRMR feature selection algorithm and LR classifier was 0.87 (with accuracy of 0.74, sensitivity of 0.85 and specificity of 0.60). And, in validation data set, AUC was 0.92 (with accuracy of 0.70, sensitivity of 0.81 and specificity of 0.58).

![Fig. 1. The results of MRMR feature selection and logistic regression model in training and validation set by using 1000 bootstrapping sample.](image)

IV. DISCUSSION AND CONCLUSION

In this study results of training dataset was validated with external validation dataset which confirming the reliability and reproducibility of thyroid nodules malignancy prediction model [11, 15]. At first, we used MRMR feature selection algorithm to reduce overfitting and throw out redundant quantitative features. In MRMR, the features are ranked according to the minimal redundancy and maximal relevance to target output [16]. In this study we used LR classifier to investigate the ability of machine learning based algorithms for thyroid nodules malignancy prediction. Proposed model could be potentially used as alternative to FNA as non-invasive tools in clinical routines. The main limitation of current study was the size of training sets and applying only one feature selector and one classifier for madling. Testing different combination of feature selection and classification algorithms could results in high accurate model for diagnostic and prognostic model. Also, the reproducibility and repeatability of radiomics features were neglected in model building and should be considered in future studies [17, 18].

REFERENCES