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Purpose: Despite the proven utility of multiparametric magnetic resonance imaging (MRI) in radia-
tion therapy, MRI-guided radiation treatment planning is limited by the fact that MRI does not
directly provide the electron density map required for absorbed dose calculation. In this work, a new
deep convolutional neural network model with efficient learning capability, suitable for applications
where the number of training subjects is limited, is proposed to generate accurate synthetic computed
tomography (sCT) images from MRI.
Methods: This efficient convolutional neural network (eCNN) is built upon a combination of the
SegNet architecture (a 13-layer encoder-decoder structure similar to the U-Net network) without soft-
max layers and the residual network. Moreover, maxpooling indices and high resolution features from
the encoding network were incorporated into the corresponding decoding layers. A dataset containing
15 co-registered MRI-CT pairs of male pelvis (1861 two-dimensional images) were used for training
and evaluation of MRI to CT synthesis process using a fivefold cross-validation scheme. The perfor-
mance of the eCNN model was compared to an atlas-based sCT generation technique as well as the
original U-Net model considering CT images as reference. The mean error (ME), mean absolute
error (MAE), Pearson correlation coefficient (PCC), structural similarity index (SSIM), and peak sig-
nal-to-noise ratio (PSNR) metrics were calculated between sCT and ground truth CT images.
Results: The eCNN model exhibited effective learning capability using only 12 training subjects.
The model achieved a ME and MAE of 2.8 � 10.3 and 30.0 � 10.4 HU, respectively, which is sub-
stantially lower than values achieved by the atlas-based (−0.8 � 35.4 and 64.6 � 21.2) and U-Net
(7.4 � 11.9 and 44.0 � 8.8) methods, respectively.
Conclusion: The proposed eCNN model exhibited efficient convergence rate with a low number of
training subjects, while providing accurate synthetic CT images. The eCNN model outperformed the
original U-Net model and showed superior performance to the atlas-based technique. © 2020 Ameri-
can Association of Physicists in Medicine [https://doi.org/10.1002/mp.14418]
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1. INTRODUCTION

Computed tomography (CT) imaging is commonly employed
in external radiation therapy for delineation of treatment vol-
umes and dose calculation taking advantage of the direct
availability of electron density map. Moreover, CT adequately
depicts bony structures, most often used for patient position-
ing and definition of anatomical landmarks. Nevertheless, CT
images suffer from poor soft-tissue contrast, hampering

accurate delineation of structures and tissue/organ discrimi-
nation. Conversely, magnetic resonance imaging (MRI) pro-
vides high soft-tissue contrast, thus allowing excellent tissue
discrimination and is a multiparametric imaging modality by
nature. In addition to superior soft-tissue visualization, MRI
does not use ionizing radiation as opposed to CT, thus mak-
ing online radiation planning adjustment and tumor monitor-
ing possible with no extra exposure. These features of MRI
are so promising that radiation treatment planning is being
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revisited to be based solely on MRI.1,2 Besides, the combina-
tion of MRI with other modalities such as positron emission
tomography (PET) (PET/MRI) is gaining momentum owing
to above-mentioned benefits of MRI.3,4

However, eliminating CT from radiation treatment plan-
ning or replacing PET/CT with PET/MRI is not trivial and
could be challenging since electron density maps are not
readily provided by MRI. To address this issue, various
strategies were proposed the literature to derive electron den-
sity maps from MRI rely on three generic approaches.5–7 Tis-
sue segmentation-based techniques employ image
segmentation algorithms to delineate a number of tissue
classes from MRI. This is followed by assignment of a single
predefined density value to each tissue class. Organ/tissue
segmentation is commonly performed to identify soft-tissue,
fat, air, lung, and in some cases bones from MRI.8–10 Delin-
eation of bony structures is the major challenge of this
approach since conventional MR sequences are not capable
of discriminating bone from air. To this end, specialized MR
sequences, including ultra-short echo time (UTE) and zero-
echo-time were devised to pinpoint bone signals. However,
these approaches suffer from long acquisition times, low sig-
nal-to-noise ratio and the fact that bulk segmentation of tis-
sues, does not take into account the natural heterogeneity of
bony structures, namely cortical and spongy bones.11–14

Template-based methods rely on aligned CT/MR image
pairs covering a reasonable range of anatomical variability,
commonly performed using a combination of rigid and non-
rigid image registration.15 Subsequently, MR atlas images are
registered pairwise to the target MR image followed by map-
ping the corresponding CT images to the target MR image
using the obtained transformation maps. The generation of
synthetic CT images from the transformed atlas CT is com-
monly performed using image fusion techniques (voxel-wise
weighting or averaging).16,17 The performance of atlas-based
methods for cases with abnormal anatomies is restricted.
Machine learning techniques cover a wide range of algo-
rithms that attempt to establish a nonlinear relationship
between MRI intensities and electron density maps. Among
these approaches, convolutional neural networks (CNNs)
exhibited great potential to accurately estimate electron den-
sity maps or achieve automated MR image segmentation.
This approach has witnessed great success and tremendous
growth in the image analysis framework over the years.18

Nevertheless, much effort has been made to improve the per-
formance and robustness of this approach in the framework
of CT image synthesis from MRI owing to its dependence of
the characteristics of the training datasets, such as noise and
intensity variation, which would lead to gross errors.19

Nie et al.20 used a generative adversarial network to train a
fully three-dimensional (3D) convolutional neural network
with the aim to produce a more realistic target for synthetic
CT images. Their pelvic dataset consisted of 22 subjects,
each with MR and CT images. They reported a mean abso-
lute error (MAE) and peak signal-to-noise ratio (PSNR) of
39.0 � 4.6 HU and 34.1 � 1.0, respectively. Xiang et al.21

proposed a very deep network architecture for synthesizing

CT images from T1-weighted MR images. Their model had a
transform and reconstruction steps featured by an intermedi-
ate block which embeds the tentative synthesis of CT images
into feature maps. They trained their model using a prostate
dataset consisting of 22 subjects, achieving a MAE and
PSNR of 42.5 � 3.1 HU and 33.5 � 0.8, respectively. It is
worth emphasizing that a higher PSNR does not necessarily
imply perceptually better results.22

U-Net, SegNet, and Visual Geometry Group 16 (VGG16)
models are among the most efficient convolutional neural
network architectures.23–25 The original VGG16 architecture
benefits from 13 convolutional layers using small kernels of
3 × 3 at each layer connected to three fully connected layers.
This model has in total 138 million trainable parameters and
has been incorporated in many state-of-the-art deep convolu-
tional neural network designs owing to its promising perfor-
mance and robustness.26,27 Similar to the VGG16 model, the
U-Net architecture proposed by Ronneberger et al.23 for
biomedical image segmentation has exhibited high perfor-
mance for a wide range of applications. Moreover, the SegNet
model benefits from a deep convolutional encoder-decoder
architecture and has shown promising performance in the
context of image segmentation.24

These three models were frequently exploited for different
applications owing to their efficient convergence even when
using a small of number training datasets. The U-Net archi-
tecture had a contracting path to capture the context of the
input shape and a symmetric expanding path for the recon-
struction of segments in biomedical imaging. For precise
localization, the high-resolution features from the contracting
path were combined with the upsampled output in the
expanding path. Inspired by the U-net architecture, Badri-
narayanan et al.24 proposed SegNet, a deep convolutional
neural network for image segmentation using an encoder-de-
coder framework with pooling indices shortcut between
them. Pooling indices indicate the locations where the feature
maps in the encoder show high values and make major con-
tribution to better reconstruct the output shape. The funda-
mental structures of the encoder and decoder blocks in this
model were constructed based on the original U-Net network.
These state-of-the-art architectures of the convolutional neu-
ral network aim at increasing the accuracy of the outcomes
while avoiding dramatic increase in the complexity of the
algorithm and training parameters.

Han employed a similar encoder-decoder structure and
applied maxpooling indices shortcut between them which
enabled an end-to-end CT image synthesis from MRI in the
brain region.28 This method was further evaluated in the pel-
vis region against state-of-the-art atlas-based methods,
demonstrating comparative performance for synthetic CT
estimation29,30. In addition to the above mentioned methods,
generative adversarial networks (GAN) have shown great
potential in a broad range of applications, including image
reconstruction,31,32 partial volume correction,33 and super-
resolution imaging.34 In this regard, the adversarial semantic
structure deep learning proposed in Ref. [35] resulted in reli-
able synthetic CT generation and clinically tolerable PET
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quantification bias. Despite the promising performance of the
above-mentioned approaches, a relatively large number of
trainable parameters requires large training dataset to ensure
efficient training while avoiding underfitting/overfitting. This
also adds to the complexity of the optimization process to
escape from the local minima and slow down the conver-
gence rate of the training process.

Building on our previous work,36 a new convolutional neu-
ralnetwork architecture was proposed to achieve accurate and
robust CT synthesis through efficient training using a small
number of training subjects. This architecture is inspired from
the U-net and SegNet structures with encoder-decoder com-
partments. The encoder-decoder compartments were structured
based on the U-Net architecture modified by residual net-
works, deconvolutional layers and scaled exponential linear
unit (SeLU) to achieve effective training and to minimize the
hazard of overfitting. The proposed algorithm was evaluated in
the context of CT image synthesis from pelvis MRI. Among
the advantages of the technique is a robust network for efficient
training using a small number of training subjects for applica-
tions where generating a large training dataset is challenging.

2. MATERIALS AND METHODS

2.A. Image acquisition and preprocessing

The dataset used in this study consists of 15 co-registered
MRI-CT pairs of male pelvis scans (1861 two-dimensional
images). The cohort included patients aged between 56 and
76 yr (68 � 3) with body mass indices ranging from 18.9 to
34.8 kg/m2 (25 � 2.5). The CT scans were acquired on a GE
LightSpeed RT (Milwaukee, USA) with a voxel size of
1.5625 × 1.5625 × 2 mm3 and stored in a matrix of
256 × 256 × 128. The CT scans were performed with empty
rectum and full bladder. The MRI scans were acquired on a
Siemens Skyra 3T scanner (Erlangen, Germany) using a 3D
T2-weighted 1.4 mm isotropic sampling perfection with
application optimized contrast covering the whole pelvis area.
The MRI voxel size was originally 1.4 × 1.4 × 2 mm3 that
was converted after coregistration to the corresponding CT
image resolution. The patients were referred to the depart-
ment of radiation therapy for the treatment of prostate cancer.
The CT and MR images were acquired in the same day or
with one day difference maximum. MRI to CT image regis-
tration was performed using a combination of rigid and non-
rigid transformations and the normalized mutual information
criterion. MR images were aligned to CT images using B-
spline transform functions implemented within the Elastix*

package. Prior to image registration, MR images underwent
intensity nonuniformity (intra-patient) correction using N4
ITK software followed by image denoising using a bilateral
edge preserving filter. Inter-patient MRI intensity variation
was addressed by histogram matching to a common his-
togram template. Two-dimensional (2D) slices of MR and
CT images were stacked in two separate tensors with

dimensions of (1861, 256, 256, 1). The normalization of each
tensor was performed using the following formula:

y Normalizedð Þ¼ x�xminð Þ= xmax�xminð Þ (1)

where xmax and xmin denote maximum and minimum values
of image pixels in the tensor, respectively. Hence, the range
of image intensities would be within the range [0–1] for both
MR and CT images. In the next step, we divided each tensor
into training tensor (1550, 256, 256, 1) and validation tensor
(311, 256, 256, 1).

The evaluation of the proposed method includes four addi-
tional patients (in addition to 15 patients used for training
and evaluation).These four patients were scanned using the
same acquisition parameters and were solely included in the
evaluation process.

2.B. Network architecture

The overall architecture of our model is inspired from the
works of Ronneberger et al.23 and Badrinarayanan24 through
the combination of U-net and encoder-decoder structures.
The efficient CNN (eCNN) model was built based on the
encoder-decoder networks in the U-Net model where the con-
volutional layers were replaced with the building structures
(aiming at extracting image features from the input MRI25) as
illustrated in Fig. 1 and Fig. S1. The number of filters in each
of the building structures was set the same as those of the cor-
responding convolutional layers in the U-Net model.

The building structure has two 3 × 3 convolutional layers,
wherein each layer is followed by batch normalization and
SeLU activation layers to avoid dying rectified linear unit
(ReLU) effects. ReLU was initially proposed to cope with the
challenge of vanishing gradients, a difficulty faced by the
neural networks which utilize gradient-based learning
approaches (e.g., back propagation). This issue renders the
parameters tuning in the earlier layers of the architecture
complicated and becomes worse as the number of layers
increase. ReLUs effectively tackled the vanishing gradient
issue through converting the negative values to zero. In fact,
ReLU acts as an identity map for positive inputs while nega-
tive inputs are mapped to zero. Dying ReLU effect or dead
state occurs when this function gets stuck in the negative side.
Since the slope of the negative side in ReLU is zero, once a
neuron falls in this region, it is very unlikely to escape/re-
cover from dead state. As such, these neurons do not play any
role in the learning process. Although ReLU helps the deep
neural network to handle the vanishing gradient issue, it
inherently bears the risk of falling or getting stuck in a dead
state. This could take place when changes in weights cause
very small changes in the output of the next iteration in the
sense that ReLU barely operates in the linear part (identical
mapping or positive side). As such, the related cells are not
able to contribute effectively to the learning of the network
and their gradients remain almost equal to zero. If this phe-
nomenon occurs in a considerable number of cells, the net-
work could fail from operating properly. SeLU was
introduced37,38 by Klambauer et al.39 to address this issue.*http://elastix.isi.uu.nl/.
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SeLU xð Þ¼ λ
α ex�1ð Þ x≤0

x x>0

�
(2)

where α is a constant value (equal to 1.6733) and x denotes
the input. For input values greater than zero, SeLU operates
like ReLU but multiplied by a factor λ (a positive num-
ber ~ 1.05). For a negative input, the output is different from
zero and follows an exponential curve. This characteristic of
SeLU promotes a self-normalizing property during the learn-
ing process and weight updates which helps to circumvent
the dead state.

In this model, wherever a connection is established
between two convolutional layers with different dimensions
(or number of filters), a matching layer is inserted to adapt
the dimensions. The depth of the network is critical for
proper features extraction as deeper networks lead to higher
order feature extraction.37,38 Deep networks inherently inte-
grate low/mid/high features into the end-to-end learning pro-
cess. It should be noted that increasing the depth of the
network by simply inserting a series of plain convolutional,
batch normalization, namely SeLU activation and Maxpool-
ing layers, is not enough for image segmentation or image
classification tasks.40 In fact, there are two major issues,
which can potentially impair the performance of the network:
overfitting and gradient vanishing/exploding. These issues
prevent the deep networks from efficient convergence and
affect the accuracy of the outcome. In convolutional neural
networks, the number of learning parameters increases expo-
nentially with the depth of the network and as such, apart
from the computational cost, the training of the network
would become more challenging. As discussed earlier, to
overcome these issues, we replaced each convolutional layer
in plain U-Net architecture with a building block architec-
ture,38 referred to as building structure in this work (Fig. 1).

This reformulation of layers caused more straightforward
optimization and efficient convergence using a small data-
set. Equation (3) formulates the core of the proposed
model.

yi ¼ SeLU SeLU wi2:SeLU wi1xiþbi1ð Þþbi2ð Þþ xið Þ (3)

xi and yi denote the input and output vectors of layer (i),
respectively. In Fig. 1, f indicates the number of filters in each
layer, wi1 and wi2 are the learning weights and bi1 and bi2
indicate the biases inside each building structure. Figure 2
summarizes the overall structure of our proposed deep CNN
model. As explained earlier, the number of filters in our
model is similar to the original U-Net model.

In the encoding part, whenever the number of filters is
doubled, a maxpooling layer with 2 × 2 window and stride 2
(nonoverlapping window) was used in the next layer to
reduce the size of the feature by half to avoid unnecessary
computational cost. At the maxpooling layers, the pooling
mask indices were saved for use at the corresponding decod-
ing network as a shortcut connection (Fig. 2). The decoding
layers were modified according to the corresponding encod-
ing structures where the maxpooling layers were replaced
with deconvolutional layers. This architecture contained in
total 52 (26 encoding and 26 decoding) 3 × 3 convolutional
layers enabling efficient feature extraction from input MRI
and CT synthesis. During the learning procedure, the deep
encoder network learns to extract a hierarchy of complex fea-
tures from the input MRI. As shown in Fig. 1, before each
SeLU layer, a batch normalization layer is set to reduce the
internal covariate shifts and improving the training of the
eCNN model. The existence of batch normalization layer
enabled the use of higher learning rates and caused less sensi-
tivity to the initialization of the training parameters.41 The
decoding network is a mirroring of the encoding network
except that instead of downsampling by a maxpooling layer, a
2D convolutional transpose (deconvolution) layer with 2 × 2
window and stride 2 was used for upsampling. This allowed
efficient update of the parameters of this layer during train-
ing. At the end of the decoding network, a 1 × 1 convolu-
tional layer reconstructs the sCT image with the same
resolution as the input MRI.

2.C. Model implementation

The proposed deep convolutional neural network model is
implemented using the open source Keras TensorFlow

FIG. 1. The building structure in the proposed model. f denotes the number of filters in each convolutional layer of this structure.
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backend package.42 The algorithm was run on an NVIDIA
GTX GEFORCE 1080 Ti with 11 GB graphics memory. The
training was performed using mean absolute error as loss
function and back-propagation algorithm with Adam stochas-
tic optimization method. A batch size of 13 was used for the
training of the model. A higher batch size was not possible
owing to limitations in the graphic memory. The bias and ker-
nel initializer were set at “zeros” and “he- normal”, respec-
tively, for a better convergence rate in the eCNN model.
Using batch normalization layers reduced the internal covari-
ate shift which is the change in the input distribution of each
layer. The input to each layer might be affected by certain
parameters which could lead to fluctuation of the input to the
next layer. By using batch normalization layers, the internal
covariate shift was reduced trough minimizing the changes in
the input distribution of each layer and fluctuation of the
input to the next layer. For this network, the learning rate was
set to 0.01 and momentum to 0.9 for proper training. In total,
the eCNN model has 52 two-dimensional 3 × 3 convolu-
tional layers and 66996609 trainable parameters. Without
using any pre-trained model for encoding and decoding parts
or any data augmentation, the eCNN model learned to effi-
ciently generate sCT images from MRI. The 3D images of
the 15 patients were converted to 1861 two-dimensional
256 × 256 slices among which 1550 were used for training
and the rest for evaluation using a fivefold cross-validation

scheme. The eCNN model is able to converge without any
significant overfitting after less than 200 epochs. For an elo-
quent comparison, the basic encoder-decoder model based on
the U-Net architecture (Fig. S2) was also evaluated in this
work to provide a bottom line for performance assessment of
the proposed eCNN model. To this end, the U-Net model was
trained using the same dataset and a sufficient number of iter-
ations (200 epochs) to ensure proper convergence. The hyper-
parameters were separately fine-tuned for a fair comparison.
Figure 3 shows the training and validation loss of the pro-
posed and the U-Net models for 200 training epochs.

2.D. Atlas-based method

The proposed deep learning-based technique was com-
pared to an atlas-based method to provide insight to the level
of accuracy achieved using the eCNN model. A representa-
tive atlas-based approach was implemented in this work,
which involved pairwise registration of the MR atlas images
to the target subject in a leave-one-out cross-validation
scheme.43 To this end, MR images of the 14 patients were
deformed to match the MR image of the target patient using a
combination of rigid and nonrigid registrations. Image regis-
tration was performed using the B-spline transform function
and a normalized mutual information criterion as loss func-
tion implemented within the Elastix package.44 Thereafter,

FIG. 2. Architecture of the proposed model. The digits shown next to each building structure denote the number of filters used in the convolutional layers. The
dashed arrows labeled with high resolution features indicate the connections between encoding and decoding blocks to transfer high-resolution features. The
dashed arrows labeled with maxpooling indices depict the connections between the maxpooling layers and decoding networks to transfer the corresponding
indices. The architecture of inside the building structures are indicated by the dashed rectangles.
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using the obtained transformation maps, the corresponding
CT atlas images were mapped to the target subject (for each
target patient, 14 atlas CT images were transformed to a com-
mon coordinate of the target subject). The final atlas-based
synthetic CT images were generated by taking the average of
the all transformed CT images in a voxel-wise manner.45

2.E. Evaluation strategy

The accuracy of our eCNN model was evaluated by com-
paring the generated sCT images to the ground truth CT
images using the MAE and mean error (ME) metrics. Fur-
thermore, the Pearson correlation coefficient (PCC) and
structural similarity index (SSIM) were also computed
between the ground truth CT and sCT. PCC is a measure of
the linear correlation between two samples whereas the SSIM
is a measure for predicting the perceived quality of digital
images and videos. The calculation of the above-mentioned
metrics was carried out only for voxels within the body con-
tour using the following equations:

MAE¼ 1
N
∑N

i¼1 CT ið Þ� sCT ið Þj j (4)

ME¼ 1
N
∑N

i¼1 CT ið Þ� sCT ið Þð Þ (5)

PCC CT ,sCTð Þ¼
∑N

i¼1 CT ið Þ�CT
� �

sCT ið Þ� sCT
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 CT ið Þ�CT
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑N
i¼1 sCT ið Þ� sCT

� �2q (6)

SSIM CT ,sCTð Þ¼ 2CT � sCTþ c1
� �

2σxyþ c2
� �

CT
2þ sCT

2þ c1
� �

σ2x þσ2y þ c2
� � (7)

PSNR dBð Þ¼ 20:log10
1ffiffiffiffiffiffiffiffiffiffi
MSE

p
� 	

(8)

where CT and sCT are means of reference CT and synthetic
CT images, respectively. c1 and c2 are constants and σxy, σx
and σy denote the covariance of CT and sCT , variance of CT
and variance of sCT samples, respectively. MSE indicates
pixelwise mean squared error between synthetic CT and refer-
ence CT images.

The above-mentioned metrics were also calculated sepa-
rately for air, soft-tissue, and air cavities. These tissues
were segmented from the reference CT and sCT images by
applying the following intensity thresholds: bone >160 HU,
air cavity <−400 HU inside the body contour, soft-tissue
between −400 and 160 HU.35 Moreover, given the seg-
mented bone, air cavities and soft-tissue from the synthetic
and reference CT images, the dice similarity coefficient46

was calculated to evaluate the tissue identification accuracy

FIG. 3. Training and validation losses of efficient convolutional neural network and U-net architectures within 200 epochs.
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using the atlas method, the U-Net architecture and the
eCNN model.

DSC¼ 2jX∩Y j
jXjþ jY j (9)

In Eq. (9), X and Y denote the binary mask of tissues seg-
mented from the synthetic CT and reference CT images,
respectively.

All quantitative metrics were calculated in 2D on each
slice (rather than on the whole 3D volume). Hence, the mean
and standard deviation reflect the performance of the differ-
ent approaches on a 2D slice basis. Tissue segmentation was
performed as a post-processing procedure on synthetic CT
images generated by eCNN, the U-Net architecture and the
atlas-based methods. The segmentation threshold levels uti-
lized in Ref. [35] were adopted for the delineation of con-
tours.

To investigate the impact of data augmentation on the per-
formance of the eCNN and U-Net models, affine transforma-
tions using the following sub-transforms were implemented:
�5° rotation, �5% translations, �5° shearing and 5%

zooming. The quantitative results before and after data aug-
mentation were compared for both models.

To evaluate the models using the four unseen external sub-
jects (512 2D images), the training was carried out using the
15 subjects of the training dataset (1550 2D images). The
results of the external dataset are reported separately.

3. RESULTS

The training of the eCNN and original U-Net models was
performed using a fivefold cross validation scheme where
1550 two-dimensional images were used for training and 311
slices for evaluation within 200 training epochs. Figure 4
illustrates representative views of the generated synthetic CT
images along with the target MRI and the ground truth CT
images. The visual inspection revealed the superior quality of
the synthetic CT generated by the eCNN model compared to
the atlas-based and original U-Net methods in terms of
anatomical details (in particular air pockets) and bone delin-
eation. Figure S3 also depicts synthetic CT images of another
subject along with the target MRI and references CT images,
wherein the bladder and rectum are visible and highlighted.

(a)

(b)

(c)

(d)

(e)

FIG. 4. Qualitative comparison of synthetic computed tomography (sCT) images generated using the efficient convolutional neural network, U-Net and atlas-
based methods against ground truth CT together with the original input MRI shown in axial, coronal and sagittal planes from left to right, respectively. (a) Input
MRI, (b) ground truth CT, (c) sCT generated using the eCNN method, (d) sCT generated using the U-Net model, and (e) atlas-based synthetic CT.
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The results of the quantitative analysis are summarized
in Tables I and II which report the MAE, ME, PCC, SSIM,
and PSNR of the CT synthesis results for 15 training/vali-
dation patients and four additional patients, respectively,
over the whole pelvis region. Tables III and IV present the
results of the same evaluation performed in bone, air cavi-
ties and soft-tissue regions for 15 training/validation and 4
additional patients, separately. Dice similarity coefficients
are reported in Table V for the segmented air cavities,
bone, and soft-tissue from synthetic CT images. Represen-
tative slices of segmented air cavities, bone and soft-tissue
from and sCT and ground truth CT images are shown in
Fig. 5.

The eCNN and U-Net models were revaluated with and
without data augmentation where the results for the four (un-
seen) external patients are presented in Table VI. In contrast
to the original U-Net model, which performed much better
after data augmentation, the eCNN model exhibited no
improvement.

To verify the effectiveness of the major components added
to the model, notably SeLU and building structure, the eCNN
model was re-implemented several times to put into perspec-
tive the contribution of each of these components. SeLU was
replaced with ReLU and building structure with a plain 3 × 3
convolutional layer (plain structure). Figures S4 and S5 illus-
trate the training and validation losses for the eCNN model
with ReLU activation function and plain structure, respec-
tively. The superior performance of the SeLU activation func-
tion is clearly visible in Fig. S4, wherein remarkably less
fluctuations are observed in the outcome of the eCNN model
with the SeLU activation layer. The building structure com-
ponent led to improved convergence of the model and signifi-
cantly higher prediction accuracy (lower loss values in both
training and validation dataset). To sum up, Table S2 summa-
rizes the quantitative metrics calculated in the whole pelvis,
air, bone, and soft-tissue content regions, respectively, for the
four external patients (512 2D images) using the eCNN
model with ReLU activation function and without building

TABLE I. Comparison of different quantitative metrics across the entire pelvic region between efficient convolutional neural network (eCNN), U-Net, and atlas-
based methods for the 15 patients in a fivefold cross validation scheme.

Patient

MAE (HU)
(Std. Dev.)

ME (HU)
(Std. Dev.)

PCC
(Std. Dev.)

SSIM
(Std. Dev.)

PSNR
(Std. Dev.)

eCNN Atlas U-Net eCNN Atlas U-Net eCNN Atlas U-Net eCNN Atlas U-Net eCNN Atlas U-Net

1 21.8
(4.2)

55.5
(22.0)

36.8
(13.2)

1.5
(1.8)

11
(29.3)

1.9
(4.6)

0.95
(0.03)

0.80
(0.09)

0.82
(0.11)

0.98
(0.01)

0.95
(0.03)

0.96
(0.02)

35.6
(1.8)

23.1
(1.1)

31.2
(2.7)

2 27.6
(6.4)

45.9
(5.8)

45.7
(12.4)

4.1
(4.2)

13.0
(7.4)

5.6
(8.5)

0.90
(0.05)

0.85
(0.05)

0.71
(0.12)

0.97
(0.01)

0.96
(0.01)

0.96
(0.02)

31.0
(1.8)

22.1
(0.5)

27.7
(1.7)

3 24.0
(3.0)

46.7
(3.7)

38.2
(6.2)

2.1
(2.6)

9.5
(7.4)

11.0
(9.9)

0.94
(0.02)

0.87
(0.03)

0.84
(0.06)

0.98
(0.00)

0.96
(0.01)

0.96
(0.01)

33.8
(1.8)

24.3
(0.2)

30.0
(1.2)

4 39.1
(5.2)

52.9
(11.2)

54.0
(8.9)

16.1
(8.0)

−9.4
(14.1)

28.2
(8.0)

0.88
(0.04)

0.83
(0.08)

0.76
(0.06)

0.96
(0.01)

0.95
(0.01)

0.93
(0.02)

29.7
(1.3)

24.9
(1.0)

27.0
(1.1)

5 23.1
(2.5)

55.0
(22.9)

35.9
(4.2)

−1.6
(2.6)

5.4
(29.7)

9.33
(5.39)

0.94
(0.02)

0.82
(0.10)

0.84
(0.03)

0.98
(0.01)

0.93
(0.03)

0.95
(0.01)

33.1
(1.5)

20.8
(0.8)

29.2
(1.1)

6 23.5
(6.4)

74.2
(60.0)

35.1
(8.0)

0.9
(3.0)

4.6
(72.3)

8.7
(9.6)

0.95
(0.02)

0.81
(0.15)

0.85
(0.05)

0.98
(0.01)

0.95
(0.03)

0.97
(0.01)

34.7
(2.0)

22.3
(2.4)

30.8
(1.6)

7 24.2
(5.8)

55.0
(15.5)

46.5
(7.7)

1.5
(5.3)

6.7
(21.8)

19.2
(5.5)

0.95
(0.03)

0.86
(0.02)

0.82
(0.07)

0.99
(0.00)

0.96
(0.01)

0.96
(0.01)

35.1
(2.1)

24.4
(0.5)

29.3
(1.7)

8 22.0
(2.2)

54.7
(3.7)

41.1
(5.8)

−0.1
(2.3)

22.2
(5.3)

−5.4
(7.1)

0.94
(0.02)

0.88
(0.01)

0.81
(0.05)

0.98
(0.01)

0.96
(0.01)

0.95
(0.02)

33.1
(1.2)

23.3
(0.2)

28.3
(1.2)

9 17.5
(1.3)

56.9
(2.9)

26.3
(2.4)

0.9
(1.6)

34.4
(5.1)

5.8
(2.9)

0.96
(0.01)

0.86
(0.03)

0.91
(0.03)

0.99
(0.00)

0.92
(0.01)

0.97
(0.01)

36.0
(1.2)

16.0
(0.2)

32.5
(1.1)

10 23.4
(5.0)

43.3
(5.0)

38.9
(7.1)

1.5
(3.6)

4.0
(8.8)

9.0
(7.0)

0.94
(0.03)

0.85
(0.03)

0.81
(0.07)

0.98
(0.01)

0.95
(0.01)

0.95
(0.02)

33.3
(2.0)

25.1
(0.4)

29.2
(1.3)

11 25.9
(5.0)

55.9
(52.0)

38.5
(7.7)

5.9
(5.3)

−4.1
(53.0)

13.3
(4.5)

0.91
(0.03)

0.82
(0.16)

0.8
(0.05)

0.98
(0.00)

0.95
(0.04)

0.96
(0.01)

32.4
(2.0)

25.9
(2.7)

29.2
(1.5)

12 37.5
(5.3)

66.1
(2.8)

56.7
(13.0)

−7.0
(4.4)

27.2
(8.9)

−8.3
(11.8)

0.86
(0.05)

0.81
(0.05)

0.71
(0.08)

0.97
(0.01)

0.95
(0.01)

0.94
(0.02)

30.9
(1.3)

22.2
(0.3)

28.3
(1.1)

13 42.3
(8.9)

106.5
(25.6)

53.6
(13.1)

13.9
(6.0)

−91.2
(27.3)

12.0
(9.8)

0.80
(0.07)

0.83
(0.09)

0.71
(0.08)

0.95
(0.02)

0.95
(0.02)

0.93
(0.02)

27.6
(1.6)

28.3
(2.7)

26.2
(1.2)

14 55.5
(6.7)

82.7
(43.6)

57.4
(9.8)

−22.7
(6.4)

34.2
(61.0)

−21.0
(8.2)

0.80
(0.06)

0.82
(0.11)

0.76
(0.06)

0.96
(0.02)

0.95
(0.03)

0.95
(0.01)

29.0
(1.2)

22.4
(1.5)

28.4
(1.4)

15 43.2
(6.4)

117.4
(194.1)

50.8
(9.2)

24.8
(5.6)

−79.4
(203.3)

22.4
(8.6)

0.82
(0.06)

0.67
(0.35)

0.73
(0.11)

0.95
(0.02)

0.90
(0.12)

0.94
(0.02)

28.0
(1.5)

22.7
(4.8)

27.0
(1.3)

Average 30.0
(10.4)

64.6
(21.2)

44.0
(8.8)

2.8
(10.28)

−0.8
(35.4)

7.4
(11.9)

0.90
(0.06)

0.83
(0.05)

0.79
(0.06)

0.97
(0.01)

0.95
(0.02)

0.95
(0.01)

32.2
(2.7)

23.2
(2.7)

28.9
(1.7)
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structure. Combination of the SeLU activation function and
the building structure in the eCNN model enhanced remark-
ably the performance of this model.

4. DISCUSSION

The use of deep learning techniques for CT synthesis from
MRI sequences has witnessed rapid growth over the years
owing to their promising performance compared to state-of-
the-art methods.19,47 The primary aim of this study was to
introduce a robust deep convolutional neural network pre-
senting with efficient convergence in the training phase

without compromising the CT synthesis accuracy. The eCNN
framework described in this work incorporates the encoder-
decoder architecture into the U-Net model. For the sake of
effective training, the encoder-decoder architecture was modi-
fied by the residual networks through establishing extra con-
nection between the encoder and decoder compartments.
Using SeLU as activation layer and establishing the parame-
ter free identity shortcut connections in each building struc-
ture enabled avoiding overfitting and the gradient vanishing/
exploding phenomena while achieving efficient training.
Moreover, multiplication of the maxpooling indices extracted
from the encoding compartment to the upsampling layers in

TABLE II. Comparison of different quantitative metrics across the entire pelvic region between efficient convolutional neural network (eCNN), U-Net, and atlas-
based methods for the four additional patients.

Patient

MAE(HU)
(Std. Dev.)

ME(HU)
(Std. Dev.)

PCC
(Std. Dev.)

SSIM
(Std. Dev.)

PSNR
(Std. Dev.)

eCNN Atlas U-Net eCNN Atlas U-Net eCNN Atlas U-Net eCNN Atlas U-Net eCNN Atlas U-Net

1 46.2
(6.5)

128.1
(213.3)

44.5
(7.8)

20.31
(8.1)

−108.1
(217.8)

19.7
(8.3)

0.83
(0.06)

0.66
(0.36)

0.79
(0.08)

0.95
(0.01)

0.90
(0.13)

0.95
(0.02)

28.8
(1.6)

23.4
(5.4)

26.7
(1.3)

2 40.0
(12.2)

65.2
(56.0)

55.6
(16.1)

−15.4
(10.0)

−1.8
(64.7)

−24.5
(10.5)

0.80
(0.06)

0.77
(0.21)

0.77
(0.10)

0.95
(0.02)

0.93
(0.04)

0.95
(0.02)

27.8
(2.2)

23.1
(2.3)

27.2
(2.3)

3 33.6
(7.7)

86.1
(2.6)

41.7
(6.0)

6.0
(6.6)

67.0
(7.6)

17.1
(9.1)

0.84
(0.07)

0.90
(0.04)

0.74
(0.07)

0.97
(0.01)

0.97
(0.01)

0.96
(0.01)

30.7
(1.8)

27.1
(0.4)

28.2
(0.9)

4 32.2
(6.6)

72.6
(4.2)

42.1
(6.5)

13.0
(4.2)

51.7
(8.2)

12.3
(6.8)

0.83
(0.09)

0.89
(0.05)

0.7
(0.08)

0.97
(0.01)

0.97
(0.01)

0.95
(0.01)

30.7
(1.8)

27.9
(1.2)

27.5
(1.3)

Average 38.0
(5.6)

88.0
(24.3)

46.0
(5.7)

6.0
(13.4)

2.2
(68.6)

6.2
(17.9)

0.83
(0.02)

0.81
(0.10)

0.75
(0.03)

0.96
(0.01)

0.94
(0.03)

0.95
(0.00)

29.5
(1.3)

25.4
(2.1)

27.4
(0.6)

TABLE III. Summary of quantitative metrics including mean absolute error
(MAE), mean error (ME), Pearson correlation coefficient (PCC), structural
similarity index (SSIM), and peak signal-to-noise ratio (PSNR) in air, bone
and soft tissue regions for the efficient convolutional neural network (eCNN),
U-Net, and atlas-based techniques over the 15 patients.

Region Method
MAE(HU)
(Std. Dev.)

ME(HU)
(Std. Dev.)

PCC
(Std.
Dev.)

SSIM
(Std.
Dev.)

PSNR
(Std.
Dev.)

Air eCNN 548.1
(115.1)

−495.6
(143.2)

0.17
(0.12)

0.97
(0.01)

12.9
(2.1)

Atlas 592.8
(91.0)

−320.93
(116.6)

0.37
(0.23)

0.94
(0.02)

11.6
(2.2)

U-Net 576.4
(113.8)

−620.0
(147.5)

0.12
(0.11)

0.97
(0.01)

11.9
(1.8)

Bone eCNN 144.51
(54.02)

85.0
(55.7)

0.73
(0.12)

0.99
(0.00)

23.1
(3.1)

Atlas 236.2
(85.6)

−101.1
(136.3)

0.62
(0.17)

0.95
(0.02)

20.3
(1.8)

U-Net 218.5
(76.8)

161.4
(83.1)

0.64
(0.11)

0.98
(0.01)

20.6
(2.8)

Soft
tissue

eCNN 21.8
(6.2)

−4.4
(9.4)

0.84
(0.05)

0.98
(0.00)

36.6
(1.4)

Atlas 66.6
(21.2)

−53.7
(30.6)

0.72
(0.06)

0.96
(0.02)

23.3
(3.5)

U-Net 23.1
(6.6)

−7.0
(10.3)

0.82
(0.05)

0.98
(0.00)

36.1
(1.5)

TABLE IV. Summary of quantitative metrics including mean absolute error
(MAE), mean error (ME), Pearson correlation coefficient (PCC), structural
similarity index (SSIM), and peak signal-to-noise ratio (PSNR) in air, bone,
and soft tissue regions for the four external patients.

Region Method
MAE(HU)
(Std. Dev.)

ME(HU)
(Std. Dev.)

PCC
(Std.
Dev.)

SSIM
(Std.
Dev.)

PSNR
(Std. Dev.)

Air eCNN 699.7
(64.9)

−692.7
(70.1)

0.04
(0.03)

0.97
(0.01)

10.6
(0.6)

Atlas 731.3
(13.5)

−305.04
(121.0)

0.33
(0.19)

0.96
(0.01)

9.9
(1.0)

U-Net 713.0
(48.8)

−781.8
(39.7)

0.03
(0.04)

0.97
(0.01)

9.98
(0.6)

Bone eCNN 176.9
(20.9)

124.4
(25.9)

0.60
(0.05)

0.99
(0.00)

20.2
(1.0)

Atlas 254.8
(121.3)

50.77
(132.8)

0.51
(0.29)

0.97
(0.01)

19.5
(1.2)

U-Net 202.4
(36.9)

219.5
(57.3)

0.53
(0.06)

0.99
(0.00)

19.7
(1.0)

Soft
tissue

eCNN 26.3
(4.6)

2.7
(10.7)

0.88
(0.04)

0.98
(0.00)

34.8
(1.0)

Atlas 70.5
(16.2)

−61.3
(38.9)

0.69
(0.08)

0.95
(0.02)

26.0
(2.2)

U-Net 28.4
(2.4)

0.18
(13.0)

0.77
(0.02)

0.98
(0.00)

34.7
(0.7)
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the decoder compartment created a sparse/over-complete rep-
resentation.

The over-complete data representation facilitates the pro-
cess of solution finding whereas the sparse representation
enables the model to converge to a unique and accurate

solution. The extra connections established between the enco-
der and decoder compartments allowed the model to
exchange the high resolution features and created a robust CT
synthesis network with lower trainable parameters and com-
plexity.

TABLE V. Comparison of average Dice coefficient indices over the 15 patients and four additional patients for air, bone and soft-tissue regions using efficient con-
volutional neural network (eCNN), atlas-based and U-Net methods with respect to the ground truth computed tomography (CT).

eCNN Atlas U-Net

Air Bone Soft tissue Air Bone Soft tissue Air Bone Soft tissue

DSC for 15 patients 0.77
(0.09)

0.84
(0.07)

0.98
(0.01)

0.51
(0.22)

0.75
(0.06)

0.97
(0.01)

0.50
(0.24)

0.71
(0.06)

0.90
(0.03)

DSC for 4 Ext. patients 0.16
(0.11)

0.77
(0.03)

0.98
(0.00)

0.59
(0.26)

0.75
(0.03)

0.95
(0.02)

0.13
(0.12)

0.70
(0.09)

0.98
(0.00)

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m)

(n) (o) (p) (q)

FIG. 5. Representative slices of ground truth computed tomography (CT), magnetic resonance imaging (MRI)-based synthetic CT (sCT) image in axial plane
generated using the efficient convolutional neural network (eCNN) and U-Net models as well as atlas-based method together with binary masks of air, bone and
soft tissue. (a) Input MRI, (b) Ground truth CT, (c) ground truth air mask, (d) ground truth bone mask, (e) ground truth soft-tissue mask, (f) eCNN sCT, (g)
eCNN air mask, (h) eCNN bone mask, (i) eCNN soft-tissue mask, (j) U-Net sCT, (k) U-Net air mask, (l) U-Net bone mask, (m) U-Net soft-tissue mask, (n) atlas-
based sCT, (o) atlas-based air mask, (p) atlas-based bone mask, and (q) atlas-based soft-tissue mask.
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Our experimental results showed that using SeLU as acti-
vation function resulted in a more efficient learning behavior
(lower training and evaluation loss) within less than 200
epochs of training (Fig. 3). The network is capable of reach-
ing the plateau without any significant overfitting while the
models proposed by Han,28 Emami et al.48 and Fu et al.49

required 600, 300, and 200 epochs, respectively, to achieve
proper training (minimizing the loss function).

In addition, the simultaneous use of maxpooling indices
and U-Net shortcut connections between encoding and
decoding networks together with replacing conventional plain
connection with residual network in the eCNN model
resulted in robust CT synthesis using a limited number of
training datasets. Comparing the results of this study to the
work of Arabi et al.19 revealed improved statistical metrics
measured in the entire pelvis region. The proposed eCNN
exhibited superior performance to the atlas-based method
achieving a MAE of 30.0 � 10.4 HU and ME of
2.8 � 10.3 HU for the entire pelvis region while the atlas-
based method resulted in a MAE and ME of 64.6 � 21.2 HU
and −0.8 � 35.4 HU, respectively. Fu et al.49 proposed a
similar model to the work of Han28 where the batch normal-
ization and upsampling layers were replaced with the instance
norm and deconvolutional layers. The modified model
resulted in MAEs of 40.5 � 5.4 HU, 28.9 � 4.7 HU and
159.7 � 22.5 HU for the whole pelvis, soft-tissue, and bone,
respectively. Conversely, the eCNN model proposed in this
work exhibited MAEs of 30.0 � 10.4 HU, 21.8 � 6.2 HU,
and 144.5 � 24.0 HU for the same regions, respectively, thus
demonstrating better performance than the model proposed
by Fu et al. as both models were trained on 2D images. Con-
sidering bone extraction accuracy, Fu et al. reported a DSC
of 0.81 � 0.04 for bone segmented using an intensity thresh-
old of 150 HU.49 To facilitate the comparison, the evaluation

of bone extraction was repeated using the same intensity
threshold where the eCNN model resulted in a DSC of
0.84 � 0.07, while the original U-Net model led to DSC of
0.71 � 0.06. Overall, the eCNN method outperformed the
atlas-based and original U-Net methods in terms of CT value
estimation and tissue delineation.

A limited number of CT synthesis studies were conducted
in the pelvis region. Hence, the performance of the proposed
approach was compared to previous works in the brain
region. Compared to a MAE and ME of 30.0 � 10.4 HU
and 2.8 � 10.3 HU achieved by the eCNN, Han28 reported
values of 84.8 � 17.3 HU and −3.1 � 21.6 HU for the same
metrics, respectively, using a typical U-Net network architec-
ture. Emami et al.48 reported a MAE of 89.30 � 10.25 HU,
SSIM of 0.83 � 0.03 and PSNR of 26.64 � 1.17, respec-
tively, using a generative adversarial network. In this regard,
the eCNN model exhibited better performance leading to
SSIM and PSNR of 0.97 � 0.01 and 32.20 � 2.65, respec-
tively.

The comparison of the results obtained in this work with
other articles might not be fair since they are not evaluated on
the same datasets with the same pre-processing steps. Hence,
the models proposed by Han28 and Fu et al.49 were imple-
mented in this work to conduct a fair comparative assess-
ment. Figure S6 depicts the training and validation losses of
these models in comparison with eCCN model. The eCNN
model exhibited faster convergence with noticeably less fluc-
tuation in the validation loss. Moreover, Table S1 summarizes
the quantitative metrics, including MAE, ME, PCC, SSIM,
and PSNR in the whole pelvis region, air, bone, and soft-tis-
sue obtained from the different eCNNs as well as Han28 and
Fu et al.49 models for the four extra patients. eCNN resulted in
a MAE of 38.0 � 5.6 (HU) for the whole pelvis, thus outper-
forming Han’s and Fu’s 2D models which achieved a MAE of
144.8 � 27.7 (HU) and 197.0 � 43.5 (HU), respectively.

To investigate the performance of the eCCN and U-net
models with a smaller training dataset, the training of the net-
work was repeated using only 900 training samples (selected
randomly) from the training dataset and the models were eval-
uated on the same test dataset. The entire dataset contained
1861 co-registered MR and CT image pairs. The original
eCNN model was trained using 1550 and tested on 311 sam-
ples, respectively. Table VII compares the results of the eCNN
and U-models before and after reducing the size of the training
dataset. Despite reducing the training dataset by almost half,
the accuracy of the eCNN model did not change dramatically.
Evidently, the U-net model cannot tolerate a reduction in the
training dataset and the results were significantly degraded,
particularly in bone and soft-tissue regions. Moreover, Supple-
mental Figure S7 compares the visual quality of the generated
synthetic CT images before and after reducing the size of the
training dataset for eCNN and U-Net models.

A possible extension of this work could be to employ
state-of-the-art architectures of the VGG19 network and
evaluate its performance in different body regions, particu-
larly the lung region, which is challenging for accurate CT
synthesis.

TABLE VI. Summary of the quantitative metrics, including mean absolute
error (MAE), mean error (ME), Pearson correlation coefficient (PCC), struc-
tural similarity index (SSIM), and peak signal-to-noise ratio (PSNR) in whole
pelvis region with and without data augmentation for the four external
patients (512 2D slices) when using the efficient convolutional neural
network (eCNN) and the U-Net architectures based on 13 initial layers of the
U-NET model, including shortcut connection between encoder and decoder
parts, ReLU activation layers, upsampling layers, and using maxpooling
indices.

MAE(HU)
(Std. Dev.)

ME(HU)
(Std.
Dev.)

PCC
(Std.
Dev.)

SSIM
(Std.
Dev.)

PSNR
(Std. Dev.)

eCNN

Without data
augmentation

38.0
(5.6)

6.0
(13.4)

0.83
(0.02)

0.96
(0.01)

29.5
(1.2)

With data
augmentation

41.1
(7.0)

8.7
(13.7)

0.79
(0.03)

0.96
(0.01)

28.8
(1.5)

U-net

Without data
augmentation

46.0
(5.7)

6.2
(17.9)

0.75
(0.03)

0.95
(0.00)

27.7
(0.4)

With data
augmentation

42.7
(9.3)

0.7
(19.9)

0.77
(0.04)

0.95
(0.01)

28.2
(1.6)
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The main objective of this work was to propose a deep
learning-based approach featuring an efficient training model
using a limited number of training datasets. The aim was to
design a deep convolutional neural network enabling robust
and effective extraction of key features, enhancing the accu-
racy of the prediction. This is especially important in applica-
tions where the number of training dataset is limited.

The inclusion of data augmentation within the training of
the original U-Net and eCNN models led to opposite out-
come. Data augmentation enhanced the learning performance
of the original U-Net network since the features extracted by
the U-Net after data augmentation were invariant to the affine
transformations. Conversely, no improvement (if not worse
performance) was observed when using data augmentation
for the eCNN model. The latter was able to effectively extract
distinctive features even prior to the application of data aug-
mentation. Hence, data augmentation did not help the eCCN
or added to the complexity of the training, to reach a better
solution for the CT synthesis problem. Even after application
of data augmentation, the U-net model was outperformed by
the eCNN model. However, eCNN exhibited sub-optimal per-
formance after data augmentation. There is no convincing/
conclusive explanation for this observation owing to the
black-box nature of deep learning approaches. A plausible
justification is that eCNN reached its optimal performance
before applying data augmentation. Data augmentation not
only did not help the network to converge to a more optimal
solution, but also disturbed the relatively optimal solution
achieved without using data augmentation.

The performance of the eCNN model was compared to an
atlas-based approach as well as the U-Net model. The moti-
vation behind this comparison was that previous comparative

studies demonstrated the dependable performance of atlas-
based methods in the context of CT synthesis for the purpose
of MRI-guided treatment planning19,50 and PET attenuation
correction.35 Hence, the atlas-based technique could serve as
baseline for comparison to provide an insight into the overall
performance of the proposed model.

5. CONCLUSIONS

A novel eCNN model with efficient learning performance
was proposed for the generation of synthetic CT images from
MRI. This model relies on a combination of U-net, SegNet,
residual connection, and SeLU as activation layer for efficient
synthetic CT generation from MR images. The quantitative
evaluation revealed promising performance of the proposed
method compared to atlas-based techniques. This model
exhibited efficient learning capability using only a small
number of training dataset, outperforming both the atlas-
based method and U-Net model.
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TABLE VII. Summary of quantitative metrics, including mean absolute error (MAE), mean error (ME), Pearson correlation coefficient (PCC), structural similarity
index (SSIM), and peak signal-to-noise ratio (PSNR) calculated in the pelvis, air, bone and soft-tissue regions for the four external patients when using the effi-
cient convolutional neural network (eCNN) and U-models before and after reducing the size of the training dataset

Model Region

MAE(HU) ME(HU) PCC SSIM PSNR

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

eCNN (trained with 1550 samples) Whole pelvis 38 5.59 6 13.35 0.83 0.02 0.96 0.01 29.48 1.26

eCNN (trained with 900 samples) 40 4.03 −14 4.5 0.82 0.01 0.96 0.01 24.97 0.42

U-Net (trained with 1550 samples) 45 7.67 9 10.75 0.8 0.03 0.97 0 27.87 0.78

U-Net (trained with 900 samples) 123 10.32 107 9.62 0.75 0.01 0.96 0 24.1 0.34

eCNN (trained with 1550 samples) Air 700 64.86 −693 70.07 0.04 0.03 0.97 0.01 10.57 0.64

eCNN (trained with 900 samples) 711 76.73 −730 94.54 0.03 0.02 0.95 0.02 9.99 0.64

U-Net (trained with 1550 samples) 356 81.04 −376 112.85 0.04 0.11 0.97 0 13.39 1.4

U-Net (trained with 900 samples) 309 64.5 −232 85.98 0.2 0.11 0.98 0 16.54 1.75

eCNN (trained with 1550 samples) Bone 177 20.92 124 25.92 0.6 0.05 0.99 0 20.24 1.02

eCNN (trained with 900 samples) 201 32.87 132 29.23 0.59 0.02 0.98 0 17.36 0.65

U-Net (trained with 1550 samples) 220 24.14 207 58.57 0.49 0.07 0.99 0 18.1 1.44

U-Net (trained with 900 samples) 384 13.14 380 13.07 0.39 0.06 0.99 0 14.77 0.21

eCNN (trained with 1550 samples) Soft tissue 26 4.59 3 10.71 0.88 0.04 0.98 0 34.79 0.96

eCNN (trained with 900 samples) 28 5.87 −6 14.01 0.87 0.06 0.98 0.01 26.88 0.79

U-Net (trained with 1550 samples) 26 4.9 7 10.55 0.79 0.02 0.98 0 34.11 0.68

U-Net (trained with 900 samples) 102 9.5 98 10.26 0.74 0.04 0.98 0 26.99 0.72
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SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Fig. S1. Full architecture of the eCNN model. The numbers
in maxpooling and deconvolution boxes denote spatial reso-
lution reduction and increasing ratio, respectively. The digits
shown in each building structure represents the number of fil-
ters in each convolutional layer in this structure.
Fig. S2. Architecture of the original U-net model. The digits
shown next to each building structure denote the number of
filters used in the convolutional layers.
Fig. S3. Qualitative comparison of sCT images generated
using the eCNN, U-net and atlas-based methods against stan-
dard of reference CT images along with the original input

MRI shown in axial, coronal and sagittal planes. (A) Input
MRI, (B) standard of reference CT, (C) sCT generated using
eCNN, (D) sCT generated using the U-net model, (E) atlas-
based synthetic CT, and (F) manual delineation of bladder
(white) and rectum (red) obtained from the reference CT
image.
Fig. S4. Training and validation losses for the eCNN model
with SeLU (red) and ReLU (green) activation functions.
Fig. S5. Training and validation losses for the eCNN model
with (red) and without (green) building structure (Residual
block).The building structure is replaced with plain 3×3 con-
volutional layer.
Fig. S6. Training and validation losses for eCNN, Fu and
Han models within 200 epochs.
Fig. S7. (a) Original MRI, (b) reference CT, (c) synthetic CT
generated using eCNN model trained with 1550 samples (full
training dataset), (d) synthetic CT generated using eCNN
model trained with 900 samples (reduced training dataset),
(e) synthetic CT generated using U-net model trained with
1550 samples and (f) synthetic CT generated using the U-net
model trained with 900 samples.
Table S1. Summary of the quantitative metrics, including
MAE, ME, PCC, SSIM, and PSNR measured in the whole
pelvis region, air, bone, and soft-tissue obtained from the
different variations of the eCNN model for the four external
patients (512 2D images).
Table S2. Summary of the quantitative metrics, including
MAE, ME, PCC, SSIM, and PSNR in the whole pelvis
region, air, bone, and soft-tissue obtained from the different
models for the four extra patients (512 2D images).
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