










resulted in an absolute average SUV bias of 1.35% 6 1.15% and
1.12% 6 0.93%, respectively (Table 4). Even though a very low
SUV bias was observed in LD images, a remarkably increased SD
was seen, reflecting the high noise level in LD images. The sym-
metric left and right sides of the brain regions were merged, report-
ing a single value to reduce the number of regions. Hence, the 83
brain regions were reduced to 44 in Figure 6. The higher SD of
SUV bias was observed in LD images, reflecting the noisy nature of
low-count images. Lower SDs were observed in PSS than in PIS.
Supplemental Figures 4 and 5 show the relative error (%) of 28

radiomic features calculated for PSS and PIS images across the 83
brain regions for the 20 subjects in the test dataset. The mean RE of
SUVmean calculated across all brain regions was 0.24% 6 0.96% and
1.05% 6 1.44% for PSS and PIS, respectively. The largest SUVmean

bias between PSS and PIS images with respect to reference FD im-
ages was observed in the brain stem (4.04%), corpus callosum (3.8%),
pallidum (3.08%), caudate nucleus (1.6%), and superior frontal gyrus
(3.38%). SUVmax had a mean RE of 1.18% 6 1.5% and 0.81% 6
0.51% for PIS and PSS, respectively. The mean RE of the homoge-
neity radiomic feature belonging to the gray-level cooccurrence ma-
trix category was 21.07% 6 1.77% and 0.28% 6 1.4% for PIS and
PSS, respectively. Only 12 and 5 regions had an RE greater than 2%
for PIS and PSS, respectively. The middle frontal gyrus, medial orbital
gyrus, and posterior orbital gyrus displayed substantial variances for
dissimilarity radiomic feature of both PIS and PSS (3.68% vs. 4.89%,
21.7% vs. 2.91%, and 21.7% vs. 2.9%, respectively).

DISCUSSION

Table 5 summarizes the study design and outcomes of previous
works reporting on the prediction of FD PET images from LD

images based on deep learning approaches (15–21). In this work,

we aimed to generate diagnostic-quality 18F-FDG brain PET im-

ages from LD PET data in PIS or PSS corresponding to only just

5% of injected activity compared with the regular FD scan. The

neural network was trained using a 3D scheme, considering a

batch of image slices as input, since there is a dependence of tracer

distribution along the z-axis. Hence, by including the neighboring

slices, the model would be able to capture the underlying mor-

phologic information. In contrast to previous studies, we aimed to

train the network in PSS and PIS to evaluate the performance of

both approaches for estimation of FD PET images. It was shown

that the synthesized FD images predicted from LD sinograms had

a superior image quality and lower regional SUV bias and vari-

ance than either LD or FD images predicted in PIS. This finding

highlights the value of using raw data in PSS (400 · 168 · 621 5
41,731,200) rather than the data in PIS (101 · 101 · 71 5
724,271). The data representation in PIS is different from that in

PSS. Let us consider an ideal point source located at the center of

the field of view, which would appear as a hot spot in the corre-

sponding location in PIS. The same point source would be

reflected in PSS by numerous correlated lines of response, con-

veying different data representations of the same element. The

FIGURE 6. Comparison of images of 2 clinical 18F-FDG brain PET studies (1 and 2) reconstructed from 5% LD sinograms using 4 different

reconstruction algorithms, including OSEM (A), OSEM 1 TOF (B), OSEM 1 PSF (C), and OSEM 1 TOF 1 PSF (D) with deep learning–based

predicted images in PIS (E) and PSS (F). Reference FD images reconstructed using OSEM (G) and OSEM 1 TOF 1 PSF (H) are also shown.

FIGURE 5. Bland and Altman plots of SUV differences in 83 brain regions calculated for LD (left), PIS (middle), and PSS (right) PET images with

respect to reference FD PET images in test dataset. Solid blue and dashed lines denote mean and 95% confidence interval of SUV differences,

respectively.
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extended or detailed data available in PSS helped the convolu-
tional network to better decode the underlying features, thus
resulting in superior performance. The convolutional network
trained in PIS applied simplistic noise reduction, thus leading to
blurred, highly smoothed, and slightly biased FD images.
The qualitative assessment of image quality performed by nuclear

medicine specialists demonstrated the superior performance of the
PSS approach, showing close agreement between PSS and the
reference FD images. The RMSE calculated on LD and synthesized
PSS and PIS images were 0.41 6 0.03, 0.17 6 0.01, and 0.18 6
0.04, respectively, reflecting the effectiveness of model training in
PSS (P, 0.05). Moreover, the SSIM improved from 0.846 0.04 for
LD to 0.966 0.03 for PIS images and further to 0.976 0.02 for PSS
images. It would be enlightening to consider the resulting metrics in
conjunction with those obtained from LD images for better interpre-
tation of the extent of improvement achieved by the proposed meth-
ods. For instance, Ouyang et al. (21) claimed that only 1% of the
standard dose was used, yielding LD images with better or at least
comparable SSIM (0.86 vs. 0.84) and RMSE (0.2 vs. 0.4), compared
with ours with 5% of the FD. This finding might partly stem from
differences in sensitivity between PET scanners—differences that
directly affect the quality of the PET images. In this regard, previous
studies conducted on the GE Healthcare Signa PET/MRI device (1,2)
took advantage of its higher sensitivity (21cps/kBq) and better count-
rate performance characteristics (peak noise-equivalent count rate of
210 kcps at 17.5 kBq/cm3) than those of the Biograph mCT scanner
used in this study, a scanner that had a considerably lower detection
sensitivity (9.7 cps/kBq) and count-rate performance (noise-equivalent
count rate, 180 kcps at 28 kBq/cm3). Furthermore, their technique
relied on support from coregistered MR images, which could partly
explain why a 5% LD image in the present study and a 1% LD in
abovementioned studies resulted in a comparable RMSE (;0.15).
The quantitative analysis of 83 brain regions in terms of 28 radiomic

features showed high repeatability of the radiomic features for both PSS
and PIS techniques. From the 2,324 data points corresponding to the
number of regions multiplied by the number of radiomic features, only 3
and 9 data points for PIS and PSS, respectively, had an RE larger than
5%, with the remaining data points exhibiting no significant REs. The
quantitative evaluation showed less than 1%mean absolute error in most
brain regions for PSS. We involved both patients and healthy individuals
to offer a heterogeneous dataset. Neurologic abnormalities present in our
dataset included patients presenting with cognitive symptoms of possible
neurodegenerative disease. Since the dataset for the training contained
both patients and healthy individuals, data augmentation was applied to
avoid overfitting and to guarantee robust and effective training. The
Bland and Altman analysis showed reduced bias and variance in the
83 regional SUVmean values obtained from PSS and PIS PET images,
compared with LD images. The Bland and Altman plots further dem-
onstrated the superior performance of the PSS approach, resulting in
SUVs that are comparable to the original FD images.
In terms of computation time, training in PIS is less demanding than

training in PSS. Training in PIS took about 38 h, versus about 210 h in
PSS. Moreover, synthesis of a single PET image (after training) in PIS
takes about 100 s, versus the approximately 370 s required in PSS.
This difference stems from the increased data size and consequently
added processing burden for the PSS implementation.
One of the limitations of the present study was that during the

clinical evaluation, the LD images were relatively easily identified
by physicians. Hence, the physicians could have been subcon-
sciously biased and could have assigned lower scores to these
images. Moreover, patient motion during the PET/CT scan, particularly

for patients with dementia, who are more susceptible to involuntary
motion, may impair the quality of both LD and FD PET images.
However, motion might affect LD and FD PET images differently since
the randomly selected events for creation of the LD images might not
exactly follow the same motion pattern as in the FD PET data.

CONCLUSION

We have demonstrated that high-quality 18F-FDG brain PET
images can be generated using deep learning approaches either
in PIS or in PSS. The noise was effectively reduced in the pre-
dicted PET images from the LD data. Prediction of FD PET im-
ages in sinogram space exhibited superior performance, resulting
in higher image quality and minimal quantification bias.
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KEY POINTS

QUESTION: Does implementation of deep learning–guided LD

brain 18F-FDG PET imaging in PSS improve performance over

implementation in PIS?

PERTINENT FINDINGS: Using a cohort study comparing 140

clinical brain 18F-FDG PET/CT studies, among which 100, 20, and

20 patients were randomly partitioned into training, validation, and

independent validation sets, respectively, we demonstrated

through qualitative assessment and quantitative analysis that the

FD PET prediction in PSS led to superior performance, resulting in

increased image quality and decreased SUV bias and variance

compared with FD PET prediction in PIS.

IMPLICATIONS FOR PATIENT CARE: The proposed deep

learning–guided denoising technique enables substantial reduction

of radiation dose to patients and is applicable in a clinical setting.
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