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I. Abstract 

 

Nuclear imaging is becoming increasingly popular in the medical field, particularly for the 

assessment and staging of cancer. It has become an indispensable tool for healthcare 

professionals dedicated to delivering optimal patient care. Among nuclear imaging modalities, 

PET/CT is widely used in the clinic but inherently bears a number of limitations and challenges. 

This includes the frequent occurrence of artifacts that can results in misdiagnosis or cause 

significant errors in image interpretation and analysis, mainly during the fusion of PET and CT 

images. Despite the implementation of protocols aimed at minimizing these artifacts, there are 

still imperfections. Indeed, the scientific literature has only a few articles dealing with this 

topic, thus showing a lack of in-depth research in this field. The purpose of this study is to test, 

in the context of clinical oncology, a new methodology that corrects these artifacts using 

Artificial Intelligence (AI), in particular Deep Learning (DL) algorithms. The algorithm of this 

work was developed and described in the article by Shiri et al. (1). After comparing PET/CT 

and PET-DL images using different metrics, such as image quality, the presence of artifacts, 

and diagnostic confidence, PET-DL images were found to be significantly superior to 

conventional PET/CT images. 

 

II. Introduction 

 

Various forms of nuclear imaging, including Positron Emission Tomography (PET) and 

Single-Photon Emission Tomography (SPECT), are employed for diagnosing various diseases. 

PET imaging operates by administering a radioactive tracer, for instance 18F-

fluorodeoxyglucose (18F-FDG), into the patient's body one hour prior to data acquisition in 

clinical oncology (2). The interpretation of diagnostic images generated by this imaging 

modality is challenging primarily due to its poor resolution (e.g. Figure 1a), particularly in 

critical structures such as the lungs, digestive system, and limbs (indicated by red arrows). In 

addition, the images suffer from several physical degrading factors, including Compton 

scattering. This phenomenon is caused by the interaction of annihilation photons with tissues, 

prior to reaching PET detectors. However, PET imaging offers functional information by 

revealing characteristics of body’s structures avid to the injected tracer. To compensate for the 

lack of resolution, PET is combined with Computed Tomography (CT) to provide the 

anatomical information for mapping (Figure 1b) (3). Besides, the CT scan is used to correct 

attenuation and scatter caused by the interaction of photons with biological tissues (2). Finally, 

a fused PET/CT image is formed and is more easily interpretable by nuclear medicine 

physicians and radiologists (Figure 1c). However, artifacts from CT might translate to the 

corresponding PET images, and additional artifacts can arise from both PET and CT imaging; 

the red arrows depicted in Figure 1c highlight the motion and halo artifacts, described below.  

 

One of the well-known artifacts is a mismatch between PET and CT images owing to patient’s 

breathing, i.e. the motion artifact. Indeed, obtaining PET/CT imaging begins with the 

acquisition of CT in just a few seconds, followed by PET which takes few minutes (2-3 mins) 
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per bed position (2), where the patient is breathing normally. This motion artifact leads to 

diagnostic errors, especially at the thorax/abdomen interface; lesions on the upper part of the 

liver could appear on the lower part of the right lung and vice versa. 

 

The halo artifact is also manifested by a strong uninterpretable signal on the periphery of areas 

with a high radiotracer uptake (3). For example, the bladder or kidneys are areas with high 

tracer uptake on PET, and scatter correction might fail during PET image reconstruction, 

resulting in a photopenic area near these high uptake regions (4). 

 

The truncation artifact occurs in patients whose body diameter exceeds 50 cm corresponding 

to the CT scanner’s field-of-view (FOV) (5), hence missing the CT image information for PET 

image correction.  

 

The metallic artifacts are caused by the presence of a metal hip prosthesis or any metallic object 

within the patient’s body. The metal will absorb a large portion of x-ray photons during CT 

scanning, causing hyperdense streaks to appear on CT images, thus distorting PET attenuation 

correction by the CT at the level of these streaks, which is particularly problematic for the 

analysis of possible neighboring lesions (5). 

 

Finally, after describing some artifacts observed in PET/CT imaging, it is worth highlighting 

that protocols were devised to circumvent them, especially motion artifacts. First, the 

establishment of a breathing pattern, e.g. tidal breathing described by Blodgett et al. (6) 

“instructing the patient to breathe with shallow tidal respiration until the detector is near the 

bottom of the thorax, at which time the patient is instructed to stop breathing wherever they are 

in their respiratory cycle until the detector has passed through the liver”. Second, adding to 

PET/CT, the assessment of initial PET images prior to CT-based attenuation and scatter 

correction (PET-nonASC) (7) is recommended to get rid of motion artifacts. Third, respiratory 

motion tracking by “observing in a noninvasive way, the patient from outside the body” to 

“obtain motion-free PET and CT images as well as truly spatially coregistered PET and CT 

data, thus improving both image quality and quantitative accuracy” (8). This is not an 

exhaustive list of existing solutions, but it does demonstrate the need to correct them in order 

to avoid diagnostic errors at best. 

 

Indeed, if we compile all nuclear medicine exams referred to the Department of Nuclear 

Medicine & Molecular Imaging of Geneva University Hospitals (HUG) between 2021 and 

2022, 60.3% of the indications were oncology, 33.6% cardiology, and 6.0% neurology. 

Oncological PET scans, therefore, represent most examinations interpreted by nuclear 

medicine physicians in this department. According to the study by Pan et al. (9) which analyzed 

100 PET/CT images looking for a shift at the diaphragm level caused by breathing, 34% 

presented this artifact. This finding underscores the significant relevance of this issue within 

the field of nuclear medicine. 
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Overall, the reconstruction of PET images with CT-based attenuation and scatter correction is 

the source of these artifacts. Therefore, novel artificial intelligence (AI) assisted techniques 

have been developed. Indeed, McMillan and Bradshaw (10) reported that “The ability of AI-

based approaches to obviate the need for an additional CT or transmission image greatly 

improves the capability of existing equipment”. Likewise, Arabi et al. (11) highlighted that 

“The DLAC [Deep learning-based joint PET attenuation and scatter correction] approach 

exhibited a very good and consistent performance regardless of the radiotracer used”. The 

feasibility of a similar approach, referred to as “Deep-JASC” developed by Shiri et al. (12) was 

demonstrated, concluding that “The proposed algorithm does not require the use of anatomical 

images (CT or MRI), thus providing a sensible solution in a clinical setting for standalone PET 

scanners and PET/MRI systems”. 

 

Therefore, this work aimed to demonstrate the necessity to avoid the artifacts of traditional 

PET/CT and introduce AI as a solution to this problem, with a particular focus on motion 

artifacts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Example of a representative clinical study showing the PET image (a), CT (b), and 

fused PET/CT images (c). The observed motion and halo artefacts are indicated by the red 

arrows in the upper and lower parts, respectively. 
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III. Materials and Methods 

 

1. Patient demographics 

This work is based on a retrospective study approved by the Ethics Commission (CCER ID: 

2017-00922), involving the recruitment of 2087 patients between May 2017 and September 

2022. These were oncology patients who underwent 18F-FDG PET/CT whole-body 

examinations. This database has been finely sorted to gather the good quality and artifact-free 

images, 869 in total, to train the AI algorithm and compare them to images with artifacts. The 

remaining images were therefore placed in the batch of images with artifacts. Next, 100 

patients’ images with artifacts were randomly selected, forming a set of 200 images including 

two variants for each image: the first one was corrected for attenuation and scatter using CT 

(PET-ASC), whereas the second one was corrected using the deep learning-based approach 

(PET-DL). 

 

2. Qualitative analysis 

Two nuclear medicine physicians interpreted blindly the images on Osirix viewer. This batch 

of 200 images were assessed by filling an Excel file consisting of 6 columns separating the 

different parts of the body (head/neck, thorax, thorax/abdomen interface, abdomen, pelvis, and 

limbs). For each part of the body, they had to score the quality of images (excellent, high, 

medium, poor, very poor), the presence of artifacts (absent, minor, medium, major, 

unacceptable), diagnostic confidence (excellent, high, medium, poor, very poor) and the 

number of observed lesions (0-10 and above with the letter M for multiples). Next, 50 images 

were selected with the following criteria: the presence of a motion artifact at the 

thorax/abdomen interface, classified at least by “medium” and a minimum of one lesion in this 

area. Subsequently, in order to eliminate duplicates (same images corrected by CT and DL), 

the PET-ASC cases were correlated with their PET-DL counterparts using an Excel table that 

displayed all equivalents. Ultimately, after this image matching, 14 patients with a total of 21 

lesions remained in this specific region of interest (thorax/abdomen interface). 

 

3. Quantitative analysis 

Twenty-one identified lesions were then segmented using the ITK-SNAP software. To do so, 

it is necessary to open the CT, PET-ASC, the uncorrected PET image (PET-nonASC), and the 

PET-DL image simultaneously. Then, the segmentation begins with the selection, in the four 

images, of voxels plus a margin (the peripheral gray area, which is by definition neither healthy 

nor pathological) when scrolling up and down the section of the transverse plane. This 

segmentation can then be coordinated with the other planes. Following the segmentation of 

lesions, it is possible to extract image-derived metrics, such as the Standardized Uptake Value 

(SUV), which serves as the unit of measurement used for the quantitative analysis of PET 

images. This is the standardized way of calculating tracer uptake at a voxel level in malignant 

lesions (12). Different variants of the SUV metric can be calculated, including the average SUV 

(SUVmean), which is widely used, the SUV of the most intense voxel within the lesion (SUVmax), 

or the average SUV within a 1cm3 region (SUVpeak).  
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The same analysis was carried out on the artifact-free group of images to establish a reference 

point for interpretation. Bland-Altman analysis was performed to compare the results. 

 

IV. Results  

 

1. Qualitative analysis 

The qualitative analysis is based on the direct examination of images and the diagrams 

containing the information from the Excel files filled by the two nuclear medicine physicians 

during the analysis of the 200 images. 

 

The red arrows in Figure 2 shows a large shift in the position of the diaphragm between the CT 

and the PET-nonASC, reflected on the corresponding PET/CT (red square) by a blurred area 

corresponding to both the lung and the liver. In addition, the difference map, with the red color 

representing negative bias and the blue the positive bias, highlights this discrepancy. Therefore, 

the red area at the thorax/abdomen interface corresponds to underestimation of tracer uptake 

on the PET-ASC compared to the PET-DL. In addition, in Figure 3, the right diaphragmatic 

dome appears lower on the PET-ASC (red arrow) than on the PET-DL (red arrow). 

Figure 2. Motion artifact in the diaphragmatic region indicated by the red arrows and red 

square. From left to right, CT, PET-nonASC, PET-ASC, PET-DL, and difference map (PET-

ASC minus PET-DL). 

Figure 3. Motion artifact in the diaphragmatic region indicated by the red arrows. From left to 

right, CT, PET-nonASC, PET-ASC, PET-DL, and difference map (PET-ASC minus PET-DL). 
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Two cases containing lesions at the thorax/abdomen interface are shown in Figures 4 and 5. In 

the PET-ASC image, the lesions appear to be in the right lower part of the lung (red arrow), 

while in the PET-nonASC and PET-DL images, the same lesions are located in the upper part 

of the liver (red arrows). 

 

Figure 6 illustrates another difference between PET/CT and PET-DL. At the periphery of the 

bladder, we can see on the PET-ASC image tracer uptake, absent on the PET-DL image. The 

difference map emphasizes this difference more clearly, with the red color indicating a gap in 

this region of PET-ASC compared to PET-DL. 

 

Figures 7-9 depict bar charts summarizing the results of the assessment performed by the two 

nuclear medicine physicians. The assessment of artifacts, image quality, and diagnostic 

confidence at the “thorax/abdomen interface”. First, Figure 7 compares the occurrence of 

artifacts between PET-ASC and PET-DL with 0.3% of PET-ASC images that do not contain 

artifacts versus 31.9% for PET-DL images and 39.6% of PET-ASC images presenting with 

moderate artifacts versus 15.4% for PET-DL images. Second, Figure 8 illustrates image quality 

assessment of PET-ASC and PET-DL images: 0.5% of PET-ASC images were judged to be of 

excellent quality compared to 5.5% of PET-DL images. 22.0% of PET-ASC images were 

classified to be of “high quality” compared to 44.5% of PET-DL images and finally 13.2% of 

PET-ASC images were rated as poor quality compared to 0.5% for PET-DL. Lastly, Figure 9 

compares the diagnostic confidence between these two modalities and indicates that 2.2% of 

PET-ASC images were classified as presenting “excellent diagnostic confidence” against 4.9% 

for PET-DL, 50.5% of PET-ASC images classified with “high confidence” against 70.3% in 

PET-DL and finally 7.1% of PET-ASC images were listed in the category “poor diagnostic 

confidence” against 4.4% of PET-DL images. 

 

Figure 4. Motion artifact with one hepatic lesion in the diaphragmatic region, indicated by the 

red arrows. From left to right, CT, PET-nonASC, PET-ASC, PET-DL, difference map (PET-

ASC minus PET-DL). 
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Figure 5. Motion artifact with two hepatic lesions in the diaphragmatic region, indicated by 

the red arrows. From left to right, CT, PET-nonASC, PET-ASC, PET-DL, difference map 

(PET-ASC minus PET-DL). 

 

Figure 6. Halo artifact around the bladder indicated by the red arrow. From left to right, CT, 

PET-nonASC, PET-ASC, PET-DL, difference map (PET-ASC minus PET-DL). 
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Figure 7. Bar charts comparing the two physicians’ appreciation of PET-ASC (left) and PET-

DL (right) artifacts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Bar charts comparing the two physicians’ assessment of image quality of PET-ASC 

(left) and PET-DL (right). 
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Figure 9. Bar charts comparing the two physicians’ appreciation of confidence in diagnosing 

PET-ASC (left) and PET-DL (right). 

 

2. Quantitative analysis 

The Bland-Altman graph shown in Figure 10 shows the quantitative information extracted from 

the 21 segmented lesions in the 14 patients’ images that presented lesions and motion artifacts 

in the diaphragmatic region. The three charts present the results of SUVmean, SUVmax, and 

SUVpeak for the 21 segmented lesions. On the abscissa, the SUVmean of the lesion is plotted 

whereas the ordinate displays the difference between SUVmean, SUVmax et SUVpeak of PET-

ASC and PET-DL (example of an equation for the first graph: [SUVmean PET-ASC] - [SUVmean 

PET-DL]). 

 

The difference mean in these three graphics is negative, -1.05±0.70 for SUVmean, -1.77±1.22 

for SUVmax, and -1.50±1.00 for SUVpeak (Figure 10). These results are statistically significant, 

as demonstrated by a p-value <0.05 (Table 1). However, the differences between PET/CT and 

PET-DL calculated in the artifact-free image are close to 0, that is 0.02±0.36, 0±0.7, 0.02±0.6, 

respectively (Figure 11). 

Figure 10. Bland-Altman plots comparing SUVmean, SUVmax, and SUVpeak of PET-ASC and 

PET-DL in the set of 14 images. 
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Table 1. P-values’ resulting from the comparison of SUVmean, SUVmax, and SUVpeak in the set 

of 14 images.  

 

 

Figure 11. Bland-Altman plots comparing SUVmean, SUVmax, and SUVpeak of PET-ASC and 

PET-DL of the artifact-free image set. 

 

 

V. Discussion 

 

Through the qualitative and quantitative analysis of the 200 images with artifacts and the batch 

of images from the 14 selected patients, this study revealed the inferiority of PET/CT compared 

to PET-DL. 

 

The shift in the diaphragm position observed in PET-ASC images in Figures 2 and 3 highlights 

the potential risk of misdiagnosis, especially if a lesion is present. This risk is further supported 

by the example shown in Figure 4, where a lesion located on the diaphragmatic side of the liver 

appears in the lower right lung on the PET-ASC image. However, upon examining the PET-

nonASC image, it becomes clear that the lesion is hepatic and not pulmonary. Hence, PET-

ASC images may lead to misinterpretation. 

 

This issue is also illustrated in Figure 5, where the motion artifact observed in PET-ASC is 

absent in PET-DL. This mismatch is also absent in Figures 2 and 3, where liver lesions are 
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clearly visible in the hepatic level. In addition, the halo artifact visible on PET-ASC in Figure 

6 is absent in PET-DL allowing us to analyze the region around the bladder more effectively. 

 

If we compare PET/CT and PET-DL more concretely with the help of the bar charts shown in 

Figures 7-9, PET-DL is superior to PET/CT in all aspects. PET-DL images are reported as 

having less artifact, presenting with better image quality and the two nuclear medicine 

physicians had more diagnostic confidence with PET-DL images than PET/CT. 

 

Regarding quantitative analysis, the negative mean of the differences in SUVmean, SUVmax and 

SUVpeak between PET-ASC and PET-DL indicates an underestimation of SUV by PET-ASC 

(Figure 10). This is the objectivation of the motion artifact because, in images without artifacts, 

the mean of the difference is zero (Figure 11) since the voxels in this region in PET-ASC and 

PET-DL have the same SUV (knowing that breathing did not cause a shift on PET/CT). This 

underestimation of SUV in PET-ASC is clearly visible in Figure 3. The red arrow on PET-

ASC image shows a region with a different uptake than in PET-DL image. 

 

The motion and halo artifacts shown in the figures and the other artifacts mentioned in the 

introduction, such as truncation or metal artifacts, add defects to the PET/CT image. The 

challenge is that the number of images possessing these artifacts and the extent to which they 

prevent proper interpretation is difficult to predict. Thank to Shiri et al. (1) and this work, PET-

DL images revealed their superiority by removing these barriers to PET image interpretation.  

 

From a more general point of view, the use of AI in medical imaging is growing on different 

fronts and application fields, including artifacts reduction. A number of studies have been 

conducted showing strength in the recognition and correction of artifacts caused by CT-based 

attenuation correction, in particular the one by Shiri et al. (3) which has “constructed and 

validated a highly effective and fast quality assurance tool that could be used to routinely detect 

and correct for a number of artifacts, including mismatches and motion, truncation, metal and 

halo artifacts in PET images”. In addition, the study by Whiteley et al. (13) presented a 

methodology for PET image reconstruction using AI: “The results showed that the proposed 

neural network produced images nearly equivalent to using the full count data and superior to 

conventional reconstruction of the same data”. Besides, a study specifically addressing metal 

artifacts by Gjesteby et al. (14) reported that “deep learning can be a viable tool to address CT 

reconstruction challenges”. 

 

Finally, the objective is not to replace CT with AI but rather to utilize AI as an additional 

imaging tool for further evaluation. While adding another CT scan is sometimes necessary due 

to artifacts, AI can eliminate the need for this step, leading to faster processing, cost reduction, 

and minimizing radiation exposure (10). 
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VI. Conclusion 

 

The clinical application of a deep learning algorithm for PET attenuation and scatter correction 

has demonstrated notable advantages, including a significant reduction in image artifacts, 

improved image quality increased diagnostic confidence. In addition, the use of AI in this 

context offers more benefits, such as radiation dose reduction to the patient. Overall, this 

method is well suited to complement and improve the interpretation of PET/CT images. 
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