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Statistical reconstruction-based scatter correction: 
a new method for 3D PET 
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Abstract - Accurate scatter correction is one of the major 
problems facing quantitative 3D PET and many methods 
have been developed for the purpose of reducing the 
resultant degradation of image contrast and loss of 
quantitative accuracy. A new scatter correction method 
called Statistical Reconstruction-Based Scatter Correction 
(SRBSC) is proposed in this paper and evaluated using 
Monte Carlo simulations, experimental phantoms and 
clinical studies. For accurate modeling, the scatter fraction 
and scatter response function for uniformly attenuating 
media are parametrised using Monte Carlo simulations. 
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I. INTRODUCTION 

 
One of the obstacles to the use of volume imaging PET 
scanners is the increase in the scatter fraction which influences 
the sensitivity and represents from 30% to 50% of the data 
acquired in 3D mode. The inclusion of Compton-scattered 
events degrade image quality and can seriously reduce 
diagnostic accuracy. In addition to a decrease in the image 
contrast, events may also appear in regions of the image where 
there is no activity (e.g. outside the patient). 

Many scatter correction methods attempt to estimate the 
scatter contamination and then remove it using either 
subtraction or deconvolution techniques. Some scatter 
compensation methods incorporate scatter in the transition 
matrix or point-spread function during iterative reconstruction. 
It has been shown that this can lead to highly quantitative 
accuracy (Floyd et al 1986) and improved signal-to-noise ratio 
in the reconstructed images (Beekman et al 1997, Hutton and 
Baccarne 1998). With the advent of faster computers and 
accelerated iterative reconstruction algorithms, different 
approaches to scatter compensation are receiving much 
attention. 
 

II.  SCATTER CORRECTION METHOD 
 

In this paper, a new technique for scatter correction in 3D 
PET is proposed. Other investigators independently reported a 
related method for scatter correction in SPECT imaging (Liu 
et al 1999). The principle of the method is based on the 
hypothesis that the image corresponding to scattered events in 
the projection data consist of almost low-frequency 
components of activity distribution and that the low-frequency 
components will converge faster than the high-frequency ones 
in successive iterations of statistical reconstruction methods 
such as the maximum likelihood - expectation maximisation 
(ML-EM) or its accelerated version, the ordered subsets - 
expectation maximisation (OSEM). 

It has been shown that iterative reconstruction algorithms 
possess a non-uniform convergence property (Pan and Yagle 
1991). That is, low-frequency components of the image tend 
to be recovered earlier in iterative reconstruction than high-
frequency components. The study of convergence properties 

of the ML-EM algorithm by Fourier analysis revealed clearly 
its non-uniform frequency response (Tanaka 1987). Moreover, 
preliminary investigations of inverse Monte Carlo-based 
reconstruction indicate that the recovery of spatial frequency 
information is achieved at different numbers of iterations for 
different spatial frequencies: higher spatial frequencies appear 
at higher iterations while the lower frequencies (smooth 
structures) are well defined at early iterations (Floyd et al 
1986). 

In terms of the frequency response, the scatter components 
of PET projection data tend to be dominated by low-frequency 
information, though there is some middle- and high-frequency 
information present. The SRBSC approach takes advantage of 
this by estimating the scatter component from forward 
projection of images reconstructed in early iterations of 
OSEM. The scatter fraction (SF) which gives an indication 
about the expected amount of scatter and the scatter response 
function (srf) which defines the spatial distribution of scatter 
in the photopeak data are usually the two parameters required 
for estimation of scatter component and need to be determined 
a priori. A pure additive model of the imaging system is 
assumed here where the recorded data are composed of an 
unscattered and a scattered component plus a noise term due 
to statistical fluctuations, and can be written in the following 
form: 

p p po u s= + +     η  

where po are the observed data, pu and ps are the unscattered 
and scattered components respectively, and η  is the noise 
term. The observed data can be modelled as a convolution of 
the source distribution with the system response function. The 
total response function of the scanner can be divided in two 
response kernels corresponding to the scattered and 
unscattered components, srf and urf, respectively. By 
neglecting statistical noise, the measured data can be related to 
the true activity distribution, f by the convolution relation: 

( ) ( )p fwdproject f urf srf p po u= ⊗ + =  s+  

Where ⊗  denotes the convolution operator and fwdproject is 
the forward projection operator. Within the limits of our 
assumptions, the activity distribution, f, can be roughly 
divided in two parts: 

f f fL H  = +  
where fL denotes the low-frequency image and fH the high-
frequency one. Based on the assumption that the high-
frequency components will be smeared, i.e. filtered by the 
scatter response kernels, the scatter component in the 
projection data can be approximated as follows: 

( ) ( )[ ]
( )

p fwdproject f fwdproject f srf

fwdproject f srf
s L H

L

= +

≈ ⊗

 ⊗
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The proposed SRBSC method for scatter correction exploits 
the properties mentioned above. The basic steps followed 
when applying the method consist of the following: 

 
(i) estimate the low-frequency components by only one 

OSEM iteration; 
(ii) obtain the scatter components by forward projection of 

the estimated image convolved with Monte Carlo 
simulated scatter response kernel srf; 

(iii) subtract the estimated scatter components from measured 
projections; 

(iv) reconstruct the image using any available reconstruction 
algorithm (analytic, iterative) using scatter corrected 
projection data. 

 
III. PARAMETRIZATION OF THE SCATTER RESPONSE KERNELS 

 
Scatter distribution functions. Fig. 1 shows scatter distribution 
functions for a simulated line source located at the centre of 
the FOV (left) and displaced 5 cm radially off-centre (right). It 
can be seen that the projections of a line source placed in a 
uniform water-filled cylinder are dominated in the wings by 
the object scatter and in the peak by the unscattered photons. 
As expected, the object scatter is fairly well described by 
monoexponential functions. A linear regression analysis on 
the wings of the log plot of the projection data was used to 
estimate the slope, α (in units of cm-1). The data in the 
extreme bins of the projection were excluded to avoid edge 
effects. 
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Fig. 1. Illustration of the scatter response functions when the line 
source is located at the centre of the FOV (left) and displaced 5 cm 
radially (right). The projections for the line source at the centre are 
symmetrical and were summed over all projection angles. 

This discussion remains valid, when the line source is 
shifted out of the symmetry centre. The amplitude of the short 
side of the projection compared to that of the symmetrical case 
is increased, since the path length of the photons through the 
phantom becomes shorter, whereas the amplitude of the long 
side is decreased, due to a longer pathway through the 
attenuating medium. The wings of the scatter distribution 
functions are still well parametrised by mono-exponentials, 
but with different parameters for the left and the right side. 

For the case when the line source is located at the centre of 
the cylinder, Table 1 shows a progressive increase in the slope 
of the scatter function from 0.037 cm-1 to 0.099 cm-1 with 
increasing lower energy threshold (LET). This is consistent 
with the fact that the scatter tails are less pronounced when the 
LET is increased. A good agreement between measured and 
simulated data was observed except for a LET setting of 250 
keV. 

TABLE I. Simulated and measured values of α (in cm-1), the 
slope of the scatter function exp(-αr) for different lower energy 
window settings obtained by linear regression analysis. 

LET setting              
(keV) 

simulated α 
(cm-1) 

measured α 
(cm-1) 

250 0.037 0.051 ± 0.005 
300 0.049 0.055 ± 0.005 
350 0.064 0.067 ± 0.006 
380 0.084 0.081 ± 0.007 
400 0.099 - 

 
Scatter fraction. The scatter fraction was examined with 
respect to three parameters: (i) variation in lower energy 
threshold setting, (ii) variation in radial position of the line 
source within the cylindrical phantom, and (iii) variation in the 
diameter of the cylindrical phantom. The variation of the SF 
was investigated in the same way as the scatter distribution 
function. However, in addition to the line source geometry, 
the variation of the scatter fraction in a uniform cylindrical 
phantom as a function of its size and for three lower energy 
thresholds (250, 380 and 450 keV) was also studied. The 
scatter fraction is estimated directly from the results of the 
Monte Carlo simulation as the ratio between scattered and 
total coincidences (Zaidi et al 1999). To fit the data, a simple 
function was derived SF(R)=1-exp(-2kR). As reported by 
Adam et al (1996), this function fits the scatter fraction of a 
uniform activity distribution in cylindrical phantoms as well as 
centred and off-centred line sources reasonably well, although 
some crude simplifying assumptions have been made for the 
derivation of this function. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20

Sc
at

te
r f

ra
ct

io
n

Cylinder radius (cm)

250 keV
380 keV
450 keV

 
Fig. 2. Monte Carlo calculations of the variation of the scatter 
fraction as a function of the radius R of the cylindrical phantom for a 
central line source using three different LET settings. The fitted 
curves are also shown. 

As an example, Fig. 2 illustrates the variation of the SF as 
a function of the radius R of the cylinder for a centred line 
source for the three lower energy thresholds. The fitting 
curves are also shown. Obviously, SF(R) increases with 
increasing R. It was observed that, for the same phantom size, 
the scatter fraction for a line source is always larger than that 
for a homogeneously distributed activity. This can be 
explained as follows. For a line source, the two annihilation 
photons must always travel the maximum path length through 
the phantom, which is not the case for a homogeneously 
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distributed activity. The activity distribution in cerebral scans 
can be considered as a mixture of both components. 
Consequently, its scatter fraction is between the two extremes. 

 
IV. THE 3D OSEM RECONSTRUCTION SOFTWARE 

 
A software implementation of OSEM was performed 

using an object-oriented library for 3D PET reconstruction 
developed within the PARAPET European project (Labbé et 
al 1999). As 3D iterative reconstruction algorithms are time 
consuming, the library contains classes and functions to run 
parts of the reconstruction in parallel, using parallel platforms 
with distributed memory architecture. The algorithm combines 
the forward and backprojection operators with an appropriate 
choice of ordered sets to fully use all symmetry properties for 
fast computation (Jacobson et al 1999). An analysis of the 
convergence properties of OSEM revealed that one iteration 
of OSEM is sufficient to assess the distribution of low-
frequency scatter. This property makes the method very fast, 
which renders its implementation in clinical routine viable. 

 
V. PHANTOM SIMULATIONS AND EXPERIMENTAL STUDIES 
 
An evaluation of the relative performance of the proposed 

method was performed using Monte Carlo simulated data and 
experimental phantoms of the Utah phantom and the 3D 
Hoffman brain phantom for the ECAT 953B scanner operated 
in 3D mode. A calculated attenuation correction was applied 
to simulated data sets. Transmission data was used instead in 
the experimental phantoms and clinical studies. The filtered 
backprojection/reprojection method (3D-RP) of Kinahan and 
Rogers (1989) was used to reconstruct the data sets. 

Well-established metrics are used to assess image quality. 
This includes calculations of the contrast or relative 
concentrations measured in the different compartments of the 
Utah phantom, the signal-to-noise ratio and the recovery 
coefficient. The signal-to-noise ratio was defined as the mean 
number of events divided by the standard deviation of pixel 
intensities in a ROI defined within the background region of 
the Utah phantom.

 The unscattered component in the simulated projection 
data was recorded and used as a reference to which the scatter 
corrected projections are compared. Fig. 3 shows a 
comparison of a profile through a sinogram plane representing 
the true unscattered component as estimated by the Monte 
Carlo simulations and by the scatter correction procedure for 
the Utah phantom. The scatter correction technique gives a 
reasonable estimation of the scatter component and 
successfully brings the activity to zero faster outside the 
object. 

The simulated reference image, reconstructed image 
corresponding to unscattered events only and images 
reconstructed before (CA) and after applying scatter 
subtraction using SRBSC are illustrated in fig. 4. The scatter 
correction technique improves the quality of the images and 
allows a better definition of the cold cylinder (left small 
cylinder) compared to the case where only attenuation 
correction is applied, however, the images appear noisier after 
scatter subtraction. 
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Fig. 3. Integral profiles through a sinogram plane of the simulated 
unscattered component (solid line) and the scatter corrected sinogram 
using SRBSC (dashed line) for the Utah phantom. 

       reference unscattered  CA            SRBSC 

 
Fig. 4. Reconstructed images of the simulated Utah phantom. 

Table II shows concentration ratios between different 
compartments of the measured Utah phantom for one 
distribution of activity before and after 3D attenuation and 
scatter corrections are performed on the scans. Obviously, the 
scatter correction method improves the contrast compared to 
the case where no correction is applied without significantly 
increasing the noise. 

 

Table II. Relative concentrations measured in the different 
compartments of the scanned Utah phantom without (CA) and with 
scatter correction (SRBSC). The SNR measured in the background 
is also shown. The outer compartment (E) was filled with activity 
concentration equal to that in the background region. 

Case A B C D SNR 

Calibration concentration 1 1.68 2.03 0 - 
NC 1 1.14 1.64 0.35 20.93 
SRBSC 1 1.37 1.87 0.10 18.34 

 
Table III shows the results of the quantitative evaluations 

of the percentage activity recovery in the simulated Hoffman 
3D brain phantom before and after applying the scatter 
correction technique for five circular ROIs, which cover 
important structures of the brain. The image slice used for 
calculating the ROIs was the one including the basal ganglia. 
The SRBSC technique tends to undercorrect for scatter in 
most regions but gives very good activity recovery values, 
which average within 4%. 

The reconstructed images of the physical 3D Hoffman 
brain phantom without and with scatter correction are shown 
in fig. 5. The effect of scatter removal in areas where no 
activity is present (e.g. CSF) is clearly seen and the contrast 
between grey and white matter is improved and the structures 
are more clearly delineated. 
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Table III. Percentage recovery calculated in different structures of 
clinical interest in the Hoffman 3D brain phantom before (CA) and 
after applying the scatter correction technique (SRBSC). The average 
and standard deviation (s.d.) are also shown. 

           CA    SRBSC 

 
Fig. 5. Reconstructed images of the physical 3D brain phantom. 

VI. CLINICAL STUDIES 
 

The proposed scatter correction algorithm was also tested 
on clinical data. Cerebral and oncology clinical studies were 
selected from the database and used for clinical evaluation of 
the scatter correction method. Fig. 6 illustrates a slice from the 
uncorrected and scatter corrected 3D clinical study at the level 
of the thorax. It should be noted that for the whole-body, it is 
difficult to assess the effect of the scatter correction in the 
images shown. However, the streak artefacts seen in the 
attenuation corrected image only have been significantly 
reduced after scatter subtraction. 
     CA            SRBSC 

 
Figure 6. Reconstructed images of an oncology study. 

VII. DISCUSSION AND CONCLUSIONS 
 

In summary, we have developed a new scatter correction 
method for fully 3D PET imaging. The SRBSC approach is 
computationally efficient as it can be easily implemented on 
vector or parallel computing hardware and the software 
required either for forward projection or fast Fourier transform 
is widely available in the public domain. Moreover, the low 
spatial frequency nature of the scatter distribution allows 
reducing the data size by coarse rebinning in the radial and 
axial direction without sacrificing the accuracy in the scatter 

distribution estimation. Completion of the proposed SRBSC 
algorithm for scatter correction by including accurate models 
for detector efficiency, multiple scatters, scatter from outside 
the field-of-view and a number of minor improvements would 
enable quantitative, fully 3D PET imaging in the head and the 
body. We believe that the basic principles of the method could 
also be applied to other scanner geometries including dual-
head coincidence imaging and the combined PET/CT system, 
as well as to other imaging modalities such as transmission CT 
and the combined SPECT/CT. However, the success of such 
applications will depend on the efficient and accurate 
calculation of scatter responses from objects with non-uniform 
density. 
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