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Abstract
Transmission scanning-based estimation of the attenuation map plays a crucial
role in quantitative radionuclide imaging. X-ray computed tomography (CT)
reconstructs directly the attenuation coefficients map from data transmitted
through the object. This paper proposes an alternative route for reconstructing
the object attenuation map by exploiting Compton scatter of transmitted
radiation from an externally placed radionuclide source. In contrast to
conventional procedures, data acquisition is realized as a series of images
parameterized by the Compton scattering angle and registered on a stationary
gamma camera operating without spatial displacement. Numerical simulation
results using realistic voxel-based phantoms are presented to illustrate the
efficiency of this new transmission scanning approach for attenuation map
reconstruction. The encouraging results presented in this paper may suggest
the possibility of proposing a new concept for emission/transmission imaging
using scattered radiation, which has many advantages compared to conventional
technologies.

1. Introduction

Quantitative radionuclide imaging faces a double challenge as it must deal simultaneously with
two physical degrading factors: photon attenuation in the patient’s body (Zaidi and Hasegawa
2003) and the detection of Compton scattered photons (Zaidi and Koral 2004). In nuclear
imaging, Compton scatter is the companion of photon attenuation. That is, a large fraction of
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the photons that are attenuated instantly fall into the category of a potential scatter-corrupting
photon. A photoelectric absorption contributes only to attenuation, but a Compton scatter
interaction increases attenuation and also sets up a potential scatter corruption. Uncorrected
data are therefore of little relevance for medical diagnosis and radiation therapy planning,
since clinically relevant features may not be suitably exposed to the scrutiny of physicians.
This explains why attenuation correction in nuclear imaging has been always a domain of
intense research interest (Zaidi and Hasegawa 2003).

In x-ray computed tomography (CT), which delivers anatomical information, the object
under study, e.g. the human body, is characterized by its attenuation properties. The working
principle of CT is based on the Radon transform of the attenuation map, which was introduced
by J Radon in his seminal paper of 1917 (Radon 1917). However, in radionuclide tomographic
imaging (SPECT or PET), the aim is to reconstruct the distribution of a radiotracer to obtain
related functional or physiological information. In this case, attenuation intervenes as an
impairing factor. Thus a substantial number of algorithms have been designed to cope with
the attenuation effect (Barrett 1981, Gullberg et al 1985, King et al 1996, Zaidi and Hasegawa
2003). In radionuclide imaging, the image formation process in the presence of a known
nonuniform attenuation map is described by the attenuated x-ray transform of the activity
distribution. Thus, the proper approach to solving the attenuation problem consists in finding
the analytic inversion of this transform. This turned out to be an open mathematical problem for
many years, and has been solved only recently (Novikov 2002). Determining the attenuation
map of an object is therefore an indispensable task to perform image reconstruction in nuclear
imaging.

In this work, we deal mainly with attenuation due to Compton scattering owing to the
fact that for single-photon emitting radiotracers used for nuclear imaging, absorption by
photoelectric effect is negligible (Zaidi and Hasegawa 2003). The use of scattered radiation
has been advocated long ago (Cesareo et al 1992) as a means to reconstruct the electron density
map ne, which is in turn is related to the local attenuation coefficient of the medium (Clarke et al
1976, Hussein 1989). This idea has been implemented in the so-called ‘Compton tomography’
concept, in which gamma rays from a fixed point source illuminate an object and scattered
radiation is detected by a movable collimated pixel detector (Battista and Bronskill 1981, Holt
et al 1984, Norton 1994). Unfortunately this procedure introduces a new attenuated Radon
transform on tori, for which an inversion formula is not available (except in two dimensions).
Thus up to now, the way scattered radiation could be exploited to determine attenuation in a
satisfactory way remained an open problem.

Recently, an elegant approach was proposed to exploit Compton radiation scattering in
gamma-ray emission imaging (Nguyen and Truong 2002a, 2002b, Nguyen et al 2004, Truong
et al 2007). Instead of considering scatter as an unwanted factor which decreases image quality
and quantitative accuracy, it was proposed to exploit it to establish a novel imaging principle
based on measurement of Compton scattered radiation. Image formation is now modeled
by neglecting attenuation effects using the so-called compounded conical Radon transform
(CCRT) (Nguyen and Truong 2002a). This transform is shown to be invertible and uses,
for its inversion, data collected at different scattering angles, instead of the spatial rotation
angle of the camera. The feasibility of three-dimensional (3D) object reconstruction from
its scattered radiation is thereby established. An important by-product of this new imaging
principle turns out to be a novel approach to performing transmission scanning in order to
estimate the attenuation map, which is the main topic addressed in this paper.

We present the working principle of this new concept for determining the electron density
ne from scattered radiation. It consists in illuminating the object by a point source of known
intensity and location in space and detecting scattered radiation by a standard stationary
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collimated gamma camera (in a fixed position). This situation is in fact a particular case of
scattered radiation imaging of an extended radiating object as described in Nguyen and Truong
(2002a). But now the unknown is not the source activity distribution but the electron density ne.
An inversion formula therefore exists giving ne in terms of the photon flux density measured
on the detector. As ne and the linear attenuation coefficient are interrelated, we show that the
use of this inversion formula together with an appropriately constructed correction algorithm
leads to a very accurate estimation of the object attenuation map. The analysis of the numerical
behavior of the correction procedure is realized. Simulations on realistic voxel-based phantoms
are presented followed by a discussion of the reconstruction results. Finally, perspectives for
dual-modality emission/transmission imaging based only on scattered radiation are discussed.
Note that a considerable number of dual-modality imaging technologies have been developed
during the last decade combining SPECT (or PET) imaging with x-ray CT (Keidar et al 2003)
or through transmissionless derivation of the attenuation map (Gourion et al 2002). However,
none of them use scattered radiation directly for imaging. The work presented here focuses on
an alternative technique for reconstructing the object attenuation map by exploiting Compton
scattered radiation from an external radionuclide transmission source.

2. Materials and methods

2.1. Novel reconstruction method of electron density using Compton scattered radiation

In this section we describe a novel method to determine the electron density of an object,
which subsequently leads to determination of its attenuation map.

To present the working principles, let us recall the principle of emission imaging using
Compton scattered radiation. An object (e.g. human organ) in which a radiotracer (e.g. 99mTc)
is injected emits gamma photons of energy E0 = 140 keV. In conventional SPECT imaging, a
collimated gamma camera collects the emitted photons along a given direction and produces
a projection. Using a set of projections from a sufficient number of angular directions, the
object can be reconstructed in three dimensions revealing its inner functional state. However,
photon scattering inside the medium will blur the recorded data and affect strongly the quality
of the resulting reconstructions.

On the other hand, if one sets the gamma camera to operate in stationary mode (from
a fixed position) to record scattered photons (instead of primary photons) of lower energies
E (90 keV < E < 140 keV), then a series of images labeled by E can be generated. If one
considers that most of these photons will undergo single Compton scattering with electrons
inside the object (since higher order scattered photons have much lower probability of being
detected in this window, as reported in many Monte Carlo simulation studies (Zaidi 1999,
Kojima et al 1999, Zaidi and Koral 2004)), then the recorded data are directly related to the
electronic distribution ne. As shown in Nguyen and Truong (2002a), the photon flux density
measured on the gamma camera is expressed by the CCRT of the object activity density.
Object reconstruction is consequently described by the inversion of the CCRT. This has been
done in Nguyen and Truong (2002b) at constant electronic density and without attenuating
effects.

In general, to account correctly for attenuation effects, the image formation should be
modeled by the attenuated compounded conical Radon transform (or a-CCRT), in which
attenuation factors are introduced along the photon paths. The a-CCRT formulation is similar
to the well-known attenuated x-ray transform. However, its inverse has not been found yet,
even if the attenuation map is known beforehand. In an ideal situation, one should be able to
determine at the same time electron density (or attenuation map) and activity distribution from
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one set of measurements. Since this is not the case, we shall proceed by approximations as
often done to tackle difficult problems (Zeng et al 2002). We begin by considering the CCRT
formulation of the image formation process in the presence of nonuniform electron density ne.
This time we regard ne as unknown and assume the activity distribution to be given. In fact,
the transmission scanning system simply consists of a calibrated point source positioned at a
known site. The photon flux density measured by the camera gives a first direct estimate of ne.
We therefore propose an iterative method, based on the properties of the CCRT, to construct
the object attenuation map. This method presents two main advantages:

– the attenuation map constructed in this way is photon energy dependent;
– the data acquisition procedure, which consists in collecting series of images at various

scattering angles, is performed without having to move the detector.
As this new imaging concept uses scattered radiation, it requires high performance detector

systems with excellent energy resolution. Thus, this concept is not meant to work on standard
Anger cameras but might be applicable on new generation solid-state systems such as cadmium
zinc telluride (CZT) detector arrays (Kim et al 2006, Gagnon et al 2001). Possible angular
uncertainties related to finite detector energy resolution may be treated as in the case of
Compton cameras (Hirasawa and Tomitani 2004, Mihailescu et al 2007). It is recognized that
ignoring higher order scattering owing to the complexity of the model is one major limitation
of this work and will be targeted for further research. In subsection 2.1.1, we describe first
the working principles of our method and then in subsection 2.2 the corresponding iterative
attenuation correction algorithm.

2.1.1. Electron density computation. In this subsection, we establish the relation giving the
electron density in terms of the measured scattered photon flux density and the point source
intensity.

Let S be the location of a point source of intensity f0, which is the number of photons
emitted uniformly per unit time around the 4π solid angle (figure 1). The number of photons
per unit time emitted along a direction n in a solid angle d�n is

f0

4π
d�n. (1)

From this emitting site S, there will be an incoming flux density on a scattering site M located
at a distance SM (with SM = |−→SM|) from S equal to

f0

4πSM2
. (2)

At this site M, there are ne(M) dM electrons in a volume dM around M. The number of
scattered photons per unit area arriving at the detection site D on the gamma camera under a
scattering angle θ is

dg(D, θ) = f0

4πSM2
ne(M) dM

dσC

d�

1

MD2
Aµ(SM,MD), (3)

where dσC

d�
is the Compton differential cross section given by the Klein–Nishina formula

(Barrett 1981). Since the product of the incoming flux density by the number of scatterers
and by the Compton scattering cross section yields the number of particles scattered in the
solid angle in the direction of angle θ , we must introduce the factor 1/MD2 (the square of the
distance from site M to site D), to get the flux density arriving at detection site D.

Aµ(SM,MD) represents the total attenuation factor from emission to detection

Aµ(SM,MD) = exp

(
−

∫
SM

µ(r, E0)δ(SM) dr −
∫

MD

µ(r, E)δ(MD) dr
)

, (4)
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Figure 1. Geometric parameters of photon scattering in a medium resulting from point source
transmission scanning.

where µ(r, E) is the linear attenuation coefficient at site r and energy E which can be expressed
in terms of σE(r), the Compton cross section at energy E of material at site r, as

µ(r, E) = σE(r)ne(r). (5)

The delta distributions restrict the integration to lines SM and MD in equation (4).
The flux density at the detector per unit volume is a nonlinear functional of ne given by

dg(D, θ)

dM
= f0

4π

1

SM2
ne(M)

dσC

d�

1

MD2
Aµ(SM,MD). (6)

Therefore obtaining ne directly from the measurement of dg(D, θ)/dM would not be possible.
This is why an alternative strategy is proposed. The idea is to start first with a linearized form
of equation (6), which is quite natural

dg(D, θ)

dM
= g̃(D, θ) = f0

4π

1

SM2
ne(M)

dσC

d�

1

MD2
, (7)

which precisely amounts to neglecting the nonlinear factor Aµ(SM,MD) and construct an
efficient algorithm based on equation (7). This is done in the next subsection.

2.2. Iterative attenuation correction algorithm (IAC) using scattered radiation

Because of the presence of the collimator, site M is just situated on a line parallel to the
collimator axis at site D. So in an appropriately chosen coordinate system, we would have for
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a given point source located at S = (xS, yS, zS), (xM = xD, yM = yD) and D = (xD, yD, 0).
Consequently,

g̃(D, θ) = ne(xM, yM, zM)
f0

4π

dσC

d�

1

(xM − xS)2 + (yM − yS)2 + (zM − zS)2

1

z2
M

, (8)

with

zM = zS − cot θ
√

(xM − xS)2 + (yM − yS)2,

or alternatively

g̃(D, θ) = ne(xD, yD, zS − cot θ
√

(xD − xS)2 + (yM − yS)2)

f0

4π

dσC

d�

sin2 θ

(xM − xS)2 + (yM − yS)2

1

(zS − cot θ
√

(xM − xS)2 + (yM − yS)2)2
. (9)

Therefore one may rewrite equation (9) to extract the electronic density as

ne(xM, yM, zM) = g̃(xM, yM, θ)
4π

f0
(

dσC

d�

)z2
M((xM − xS)

2 + (yM − yS)
2 + (zM − zS)

2). (10)

In fact, this is only a first estimate of ne. If the attenuation factor is taken into account,
equation (10) would have the form

ne(xM, yM, zM) = g̃(xM, yM, θ)
4π

f0
(

dσC

d�

) 1

Aµ(SM,MD)

z2
M((xM − xS)

2 + (yM − yS)
2 + (zM − zS)

2).

(11)

These considerations suggest the formulation of an attenuation correction algorithm as
described in the following steps. Since µ is unknown, Aµ(SM,MD) is also unknown. We
aim to obtain the best possible estimate of ne using equation (5) with what is available at hand,
i.e., equation (10).

Thus starting from actually collected data on the detector g̃(D, θ), identified as the zeroth
step data g̃0(D, θ), the use of equation (10) would yield a first estimate of the electronic
density which shall be called ne(0). From now on to simplify notation we shall drop the
spatial dependence of ne(r) as stated in equation (5) and denote the j th step value of ne by
ne(j). We obtain a first estimate of µ using equation (5), which shall be denoted µ0 and then
compute the attenuation factor Aµ0 to obtain the first corrected estimate as

g̃0(D, θ)

Aµ0
= g̃1(D, θ), (12)

where the attenuation effect has been removed in this first step. Thus the correction is aimed
at obtaining collected data in the absence of attenuation.

We can repeat the procedure starting from g̃1(D, θ), instead of g̃0(D, θ) , reconstruct ne(1)

using equation (10), compute µ1 (using equation (5)) and Aµ1 (using equation (4)) and end
up with g̃2(D, θ). The iterative process will be stopped whenever the mean relative quadratic
error (MRQE)ne

between two consecutive values ne(j − 1) and ne(j), for j = 1, 2, . . . , is
less than a given threshold (1% for example). This process is called the iterative attenuation
correction (IAC) algorithm and is summarized in figure 2.
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Figure 2. Flowchart of the iterative attenuation correction (IAC) algorithm.

2.3. Practical considerations for the implementation of the IAC algorithm

In the human body, one may simplify things by assuming that the only materials found are
soft tissues and bones (lungs are also soft tissues). However, their average atomic number Z is
not directly accessible. It is usually admitted that soft tissue is structurally close to water and
its electronic density may vary but will never come close to that of bone or air (e.g. lungs).
Similar considerations are valid for bone or lung tissues. So an estimated value of ne(r) allows
us to determine what type of material is met at the studied site. Using a priori knowledge
about existing materials at a particular point of interest, we can estimate its average atomic
number Z and consequently assess its scattering cross section σE,m(r) for a material m and
compute its attenuation coefficient. The IAC algorithm so set up should provide the best
possible reconstruction of the medium electron density.

On each line perpendicular to the detector equipped with a parallel hole collimator, the
location of the scattering site could be determined by the photon energy for given a given
point source position. Geometrically, for a gamma ray emanating from a point source S, the
scattering angle fixes only the scattering site M on the line perpendicular to the detector at D,
because of collimated detection. Better angular accuracy implies better geometrical accuracy.
If the radiating point source is placed on the opposite side of the detector after the object, the
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Figure 3. Source A does not allow correct reconstruction inside the cone whereas source B allows
a correct reconstruction of the entire object.

majority of interactions will be small angle scattering. Thus scattering sites will be located
inside a thin cone, as shown in figure 3. Collected scatter data are then concentrated and not
usable. This is the reason why it is more appropriate to place the source on the side of the
object as shown in figure 3 (point source B). In this way, for the same energy resolution of the
detector, more scattering sites will contribute to the image.

2.4. Convergence behavior of the IAC algorithm

2.4.1. General observations. In this section we present convergence arguments for the
practical implementation of the IAC algorithm. We first make some general observations on
the nature of errors one may encounter. A detailed mathematical discussion of the convergence
of the process is beyond the scope of this paper and will be the subject of future research.
Instead, we will propose a simplified but realistic model to show how convergence can be
reached for a given site of the object. The results will then be applied to the totality of its sites.
This of course leads to additional corrections to be carried out whenever convergence is poor
or non-existing in order to achieve a realistic reconstruction at the end.

Equations (10) and (5) are used cyclically to estimate electronic density and photon flux
density at a site of the detector. Equation (6) shows that global loss of photons depends on
the product neA(d), where d is the mean length of the photon path. But attenuation itself is
also directly dependent on electronic density. So if ne is overestimated, the excess of scattered
photons at the scattering site may be compensated by a stronger attenuation along the photon
path. Thus, there may be more than one object giving rise to the same recorded data.

The IAC algorithm realizes a stepwise estimation of ne and a stepwise correction to the
number of photons on a detection pixel. The j th step estimation of ne should in principle
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produce a more accurate estimation of attenuation than the preceding step and in turn should
give a better estimate of ne. However, at this stage, the estimate may be larger or smaller than
its expected nominal value.

Let us assume that ne is overestimated at this j th step. The attenuation will be also too
high, which means a lower value of A in equation (13). Three possibilities may arise:

(i) Roughly one may say that the product neA has correct values but with wrong values of
ne and A. The algorithm yields a wrong estimate for ne.

(ii) The product neA is underestimated, the values of ne are at first too large but will decrease
and will then tend toward the correct value at the end.

(iii) The product neA is too large. In the next step, ne would be further overestimated. The
error increases with the iterations and leads to a wrong result.

An analogous reasoning can be made when ne is at first underestimated.
Thus the question which should be raised here is how a correct value of ne can be obtained

from the fluctuating number of detected photons at a camera pixel at each step of the algorithm.
Attenuation along a photon travel path is mainly due to scattering and reduces the number
of photons reaching the detection pixel. As we are dealing with the human body, we may
assume, for simplicity, that the electronic density remains constant over large areas representing
lungs, muscles or bones and argue with a simplified version of photon detection given by
equation (11). With this hypothesis, g̃, the number of photons at a detection pixel per unit
time and unit pixel area at some energy E, can be expressed as

g̃ = neA(d)C (13)

where ne is the electronic density of the medium, A(d), the total attenuation along the photon
path from emission to detection over a distance d and C a constant representing other effects,
not relevant to this discussion.

2.4.2. Recursion relation for the estimation of ne. With the previous assumptions we show
now that the study of the convergence of the estimates of ne is equivalent to that of a simple
recursion relation which depends on one parameter.

Recall that ne(j) is the estimated value of ne at step j of the process. According to
our prescription, this means that we have a sequence of estimated Aj (d) attenuation factors,
labeled by j , coming from the previous step of the form

Aj (d) = e−σne(j−1)d . (14)

Since one must have for all j = 1, 2, . . . steps the same actual number of detected photons,
we should have

g̃ = neA(d)C = ne(j)Aj (d)C. (15)

From this relation, we extract

ne(j) = ne

A(d)

Aj (d)
. (16)

Now suppose we represent the j th estimate of ne as

ne(j) = αjne, (17)

where αj is a positive number. Plugging this form into equation (16) yields a recursion relation
for the αj :

αj = A(1−αj−1)(d), (18)
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j sequences converge towards 1 for starting values smaller and bigger than

1 (here A = 0.9).

with the initial condition α0 = A. The question of convergence of the algorithm may be
transferred to the convergence of the sequence αj for different values of the parameter A.

Equation (18) is a recursion relation for the sequence αj . In general, the convergence of
a sequence xj , defined by the recursion relation xj = f (xj−1), towards a fixed point x∗ is
guaranteed if |f ′| < 1 in the neighborhood of x∗. We will analyze this convergence in the
next paragraphs with the observation that A(d), being an attenuation factor, has a value lower
than 1.

2.5. Convergence of the IAC algorithm for various scattering sites of the object

As pointed out in the last subsection, the relevant parameter of the recursion relation is the
attenuation factor A(d), which is a function of d, the distance traveled by the photon. Thus
we discuss the convergence of the IAC algorithm at each site of the object.

2.5.1. Scattering sites near the point source. If the distance traveled by scattered photons
(near the external source) in the medium is rather short, attenuation is low (A � 1). As an
example, for A = 0.9, figure 4 shows a good convergence of αj towards 1, with αj taking
values above or below 1.

Thus the electronic density at points near the external source is correctly estimated and
attenuation correction is stable, as we can see in numerical simulations.

2.5.2. Scattering sites far from the point source. Now if the distance covered by scattered
photons in the medium is rather long, attenuation is high and A(d) is low. For A(d) = 0.15,
figure 5 shows two fixed points for the αj sequence, one of them (αj = 1) is repulsive, so that
the more we iterate the worst is the estimate of ne. With a higher starting value, ne(j) will
grow indefinitely. But with a lower starting value, αn will converge to another fixed point.
ne(j) will never tend to infinity since we know that α0 = A, which is always lower than the
second and non-repulsive fixed point.
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Figure 5. The αj sequence converges towards a non-suitable solution for αj value which is smaller
than 1 and diverges for values higher than 1 (A = 0.15). As an example, we show with the dashed
line the graph of A1−α for A = 0.23.

The results are not good for electronic density estimation using this attenuation correction
scheme for scattering points far away from the external lighting source. nn

e converges towards
a lower value of ne. This calls for the need of an additional correction.

2.5.3. Critical attenuation value. Two different convergence behaviors arise in the practical
implementation of the IAC algorithm depending on the value of the parameterA(d). Therefore,
it is essential to know which critical value Ac separates the two regimes. In other words, we
seek to determine a value of Ac such that the sequence αj admits only one fixed point. This
value is empirically found to be Ac = e−1 � 0.368. As long as the attenuation is greater
than e−1, attenuation correction is accurate. With a starting value greater than 1, the sequence
diverges.

Theorem: ∀A ∈]0, 1[, 1 is a fixed point of αj .
If α∗ is a fixed point of the αj sequence, then we should have α∗ = A1−α∗

. Conversely
we have

A = e
ln α∗
1−α∗ . (19)

But in order to have only one fixed point for the αn sequence, we must have α∗ = 1.
Hence we deduce A = e−1.

We can already note that ne (and µ) can be correctly reconstructed over a large domain
of the object. The critical value of the attenuation factor, i.e. Ac = 0.368, lies precisely inside
the range of A-values found usually in practice, namely 0.99 < A < 0.03. Thus, there exists
another domain of the object where the value of ne is underestimated.

In SPECT imaging with 99mTc labeled radiotracers, the values of A are around A ∼ 0.15
(Zaidi and Hagasewa 2003). This is normal since we are considering photons which either
barely skim the medium or traverse the medium, in which case they are strongly attenuated.

In conclusion, the region close to the point source is correctly reconstructed; however,
ne is underestimated in regions far away with increasing uncertainty as the distance from the
point source increases. In other words, there is a ‘critical distance’ beyond which attenuation
map reconstruction is not satisfactory.
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2.5.4. Additional correction when global photon attenuation is lower than Ac. When
attenuation is small, i.e. A < e−1, due to greater distances from the source, we can try to
figure out how the error increases with the distance. Recall that an approximate value of
the electronic density is related to its true value according to equation (17). The true error,
after an infinite number of correction steps, is in fact the numerical factor α∗ (limit of the
sequence αj , as j → ∞). Therefore we should seek to express α∗ in terms of A by inverting
equation (19).

This inversion is readily expressed as

α∗(A) = LambertW(A lnA)

lnA
, (20)

where LambertW(x) is the solution of the equation W eW = x. The behavior of α∗(A) is
displayed in figure 7. Then an easy way to correct the data in this situation is just to multiply
the results by 1/α∗(A).
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Figure 8. Convergence zone of the IAC algorithm.

Unfortunately A is not known and consequently we cannot perform the correction. One
possible solution consists of determining α∗ as a function of the distance traveled by the photon
d. To this end, we shall make three observations (figure 8):

• First, we determine the convergence zone in which the ISDC algorithm produces good
results. The border line is the bold dashed line shown on figure 8 along which
α∗ = 1. This could be determined empirically while looking for scattering sites for
which A = e−1 = 0.368. We will show later a better method to determine this line.

• We need to know the electronic density all around the poor convergence zone (shaded
zone in figure 8). Knowing the real value of ne at these points allows us to calculate the
error α∗ made with the IAC algorithm. Likewise, knowing the real value of ne allows us
to compute A. Using prior knowledge (e.g. symmetry) about the object under study, ne

(and consequently attenuation) would be known at all points of the external frontier of
the object. Alternatively the error could be also determined using a thin beam of photons
skimming the object. Another solution is to place at the opposite site of the external
emitting source a thin test object with known electronic density.

• Finally, we have to determine how A varies with distance in the poor convergence zone.
We know that A(d) is of the form

A(d) = e−σned = e−d ′
, (21)

where d ′ = σned and d ′ > 1 in the poor convergence zone. It is now possible to express
α∗ as a function of d ′:

α∗(d ′) = LambertW(A(d ′) lnA(d ′))
lnA(d ′)

.

= LambertW(−d ′e−d ′
)

−d ′ . (22)

Figure 9 shows the behavior of α∗(d ′). From the three previous observations and the expression
of α∗(d ′), we are able to correct the ne values in the poor IAC algorithm convergence zone.
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Figure 9. ne error estimation using the IAC algorithm convergence. α∗(d ′) is given for d ′ > 1.
For comparison, the function e1−d ′

is also depicted.

On both ends of the dashed segment in figure 8, α∗ is known, and knowing the form of α∗(d ′),
we know α∗ everywhere.

2.5.5. Determination of the actual IAC algorithm zone convergence. The convergence zone
of the corrections to ne is the same as the zone where photon attenuation verifies A > e−1.
This could be empirically determined from the IAC algorithm results, but we propose here a
better solution. Since A = e−σned , we wish to have −σned > −1. Thus the limiting distance
dlim for the convergence of the IAC algorithm is given by

dlim <
1

σne

. (23)

Providing that some prior information is available on the medium, a good approximation of
dlim could be obtained. Note that dlim depends on σ , the cross section of the medium under
study, which depends also on the incident photon energy. With higher energy photons, the
IAC algorithm’s good convergence zone could be enlarged.

In practice, we use the IAC algorithm for a medium in which ne is constant over non-
intersecting blocks. It is possible to improve further the convergence by working with
appropriate parameters inside each block.

2.6. Phantom simulations

We have chosen a phantom representing a thoracic cage in order to simulate features occurring
in typical SPECT imaging studies, i.e., a non-homogenous object consisting of three different
biological tissues (lungs, soft tissue and bone).

The object schematically representing a human thorax is made up of three types of
materials: bone (white), soft tissue (gray) and lungs (black). A cross section with ribs and
spinal column, lungs and tissue is presented in figure 10.

We adopt the following values of linear attenuation coefficients at 140 keV photon energy:
0.28 cm−1 for bone, 0.15 cm−1 for water (soft tissues), 0.000 17 cm−1 for air and 0.042 cm−1

for lungs. Typical values of electron density are: 5.91 × 1023 cm−3 for bone, 3.34 ×
1023 cm−3 for water, 3.61 × 1020 cm−3 for air and 0.634 × 1023 cm−3 (inhale) or 1.632 ×
1023 cm−3 (exhale) for lungs.
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Figure 10. Representative slices of the original attenuation map of the object without ribs (top)
and with ribs (bottom).

Table 1. Physical characteristics of some materials at 140 keV.

Material ne (cm−3) Density (g cm−3) µ/ρ (cm2 g−1)

Bone 5.91 × 1023 1.85 0.143
Water 3.34 × 1023 1.00 0.150
Air 3.61 × 1020 1.2 × 10−3 0.139
Lung see above 0.3 0.139

In table 1, physical characteristic values for bone, water, air and lungs are given.
The gamma camera is placed above the voxel-based phantom at a distance of 80 mm. The

source, as shown in figure 1, is placed at 20 mm nearby the volume under study on its side.
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Figure 11. Representative slices of the reconstructed attenuation map corresponding to those
shown in figure 10.

3. Results and discussion

Here we present the results of the reconstruction of the medium electron density (and
attenuation µ) map from collected transmission data with the gamma camera operating in list
mode. The detected photons are emitted by the external source and scattered (and attenuated)
in the medium. The reconstruction method presented in section 2.1.1 and the IAC correction
algorithm presented in section 2.2 were performed.

Figure 11 shows two representative slices of the 3D reconstructed transmission images. It
can be seen that the left parts are more accurately recovered by the reconstruction procedure.
This was expected since in our simulations, the transmission point source was on this side
of the phantom (the gamma camera was placed above the medium, i.e. far from the spinal
column).
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The mean relative error (MREµ) between the original object, represented by (µ) and the
reconstructed object represented by (µ∗), was used as a quantitative measure of image quality:

MREµ = 1

N

∑
�

|µ∗(�) − µ(�)|
|µ(�)| , (24)

where N is the number of voxels of the voxel-based phantom and � the voxel label. It
was demonstrated that a good performance can be achieved after only eight iterations
(MREµ = 17.92%). The second figure of merit used is the mean relative quadratic error
(MRQEµ) between the original and the reconstructed object, which is defined by

MRQEµ = 1

N

∑
�

(
µ∗(�) − µ(�)

µ(�)

)2

. (25)

It was also shown that after eight iterations, a good performance can be reached with
MRQEµ = 16.82%.

4. Conclusion

The method presented in this paper to estimate the attenuation map via the electron density of
a medium by measuring Compton scattered radiation from an appropriately placed external
source has brought up convincing preliminary results of its working principle. The proposed
attenuation correction method used with a conventional SPECT gamma camera allows us
to obtain simultaneously two unknown functions: the attenuation map (via the electronic
distribution) and the activity distribution from one set of measurements. It should be
emphasized that this concept is based on Compton scattered radiation measurements, which
is the original aspect stressed in this work. Several perspectives can be opened from
here. This work may suggest the possibility of proposing a new scattered radiation-based
emission/transmission imaging system having many advantageous properties: use of the
same detector, same radionuclide, stationary acquisition for transmission scanning, etc. More
importantly, what has been done for nuclear medicine imaging can be extended, in the same
spirit, to other industrial applications such as non-destructive testing. Finally on the theoretical
level, a tantalizing challenge to be tackled is naturally the analytic inversion of the attenuated
compounded conical Radon transform (a-CCRT) as a natural extension of the attenuated x-ray
transform (for which a solution was found only recently by Novikov (2002)). Such a solution
would definitely confirm the imaging power of Compton scattered radiation proposed a few
years ago (Nguyen and Truong 2002a).
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