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A new method to assess the scatter component in

positron emission tomography (PET) based on estimat-

ing the low-frequency component corresponding to

scattered events using ordered subsets - expectation

maximization (OSEM) reconstructions is proposed in

this paper and evaluated using Monte Carlo simulation

studies, experimental phantom measurements and clin-

ical studies. The rationale of this method called

Statistical Reconstruction-Based Scatter Correction

(SRBSC) is that the image corresponding to scattered

events in the projection data consists of almost low-fre-

quency components of activity distribution and that the

low-frequency components will converge faster than the

high-frequency ones in successive iterations of statisti-

cal reconstruction methods such as OSEM. The second

assumption is that the high-frequency components will

be smeared, i.e. filtered by the scatter response ker-

nels. A simple model has been devised to parameterize

the scatter component using Monte Carlo simulations.

The unscattered component estimated using SRBSC

was compared to the true unscattered component as

estimated by Monte Carlo simulations for simple phan-

tom geometries and clinically realistic source distribu-

tions. Quantitative analysis was also performed on

reconstructed images using simple metrics like the con-

trast, absolute concentration, recovery coefficient and

signal-to-noise ratio. The SRBSC method tends to

undercorrect for scatter in most regions of the 3D

Hoffman brain phantom, but gives good activity recov-

ery values which average within 1%. It was concluded

that the proposed method improves image quality and

the contrast compared to the case where no correction

is applied and that an accurate modeling of the scatter

component is essential for a proper scatter correction.

Key words: PET, scatter correction, OSEM, Monte

Carlo
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Introduction

One of the obstacles to the use of volume imaging

positron emission tomography (PET) scanners is the increase

in the scatter fraction which influences the quantitative accu-

racy and represents from 30% to 50% of the data acquired in

3D mode. The inclusion of Compton-scattered events

degrades image quality and might in some cases reduce diag-

nostic accuracy. In addition to a decrease in the image con-

trast, events may also appear in regions of the image where

there is no activity (e.g. outside the patient). Scattered pho-

tons arise from the whole attenuating medium, including the

imaging table and the PET tomograph itself.

Accurate 3D reconstruction in PET requires compensa-

tion for the effects of attenuation and scatter. The problem of

Compton scatter in 3D PET is far more complicated to solve

than attenuation [1]. The issue of scatter detection, modeling

and correction are addressed in many publications [2-8].

Implicit in all scatter correction methods in nuclear imaging

is the existence of some complementary degradation model



describing the nature and processes giving rise to detected

scattered events. The general lack of theoretical connection

between the degradation and correction models raises several

important questions about the status of the outcome of scat-

tered events and the formulation of the required scatter cor-

rection models. The problem of scatter correction is of para-

mount importance in high-resolution PET imaging in which

the scatter degradation features become more complex.

Over the last two decades, many scatter correction

methods in PET and single-photon emission tomography

(SPECT) have been developed for the purpose of reducing

the resultant degradation of image contrast and loss of quan-

titative accuracy. Simple and more sophisticated scatter cor-

rection techniques have their own advantages and drawbacks.

Most of these methods attempt to estimate the scatter conta-

mination and then remove it using either subtraction or

deconvolution techniques. There have been a number of

studies comparing these methods in SPECT [9,10] and PET

[11,12] imaging. The primary concerns affecting these meth-

ods are: (i) the scatter estimates may be inaccurate, leading

to bias in the reconstructed image; and (ii) the scatter com-

pensation is often accompanied by a substantial increase in

statistical noise. In addition, many of the methods require

estimating parameters that may change for each patient and

imaging protocol. Some scatter compensation methods

incorporate scatter in the transition matrix or point-spread

function during iterative reconstruction. It has been shown

that this can lead to highly quantitative accuracy [4,13] and

improved signal-to-noise ratio in the reconstructed images

[5]. With the advent of faster computers and accelerated iter-

ative reconstruction algorithms, different approaches to scat-

ter compensation are receiving much attention.

A new scatter correction method called Statistical

Reconstruction-Based Scatter Correction (SRBSC) in which

the low-frequency component corresponding to scatter

events is estimated using OSEM reconstructions is proposed

in this paper and evaluated using Monte Carlo simulation

studies, experimental phantoms and clinical data. A compar-

ative assessment of the relative performance of this method

against more common correction methods was also conduct-

ed and summarized in another publication [14].

Theory

Reconstruction-based scatter compensation is a tech-

nique in which the scatter response function is modeled dur-

ing the reconstruction process. Several research groups

devised different algorithms belonging to this class of meth-

ods for SPECT [4,5,13,15,16]. The proposal to include scat-

ter estimation in iterative reconstruction is original in PET.

Up to now, its feasibility in 3D PET was hampered by the

heavy computational load of scatter estimation models. In

this section, a new technique for scatter correction in 3D

PET is proposed. Other investigators independently reported

a related method for scatter correction in SPECT imaging

[17]. The principle of the method is based on the hypothesis

that the image corresponding to scattered events in the pro-

jection data consist of almost low-frequency components of

activity distribution and that the low-frequency components

will converge faster than the high-frequency ones in succes-

sive iterations of statistical reconstruction methods such as

the maximum likelihood - expectation maximization

(MLEM) or its accelerated version, the ordered subsets -

expectation maximization (OSEM), which is given by the

following equation:

f n+1=
f n

backproj
p

sensitivity                        fwdproj(f n) 
(1)

where f denotes the source distribution, p the measured pro-

jection data, n the iteration number, and fwdproj and back-

proj are the forward and back projection operators which are

carried out throughout iterative algorithms implementation.

Their accurate and efficient computation is crucial to the

accuracy, effectiveness and speed of the algorithms. The sen-

sitivity image computes the probability that an event emitted

in a given voxel is detected or not. For current generation

PET scanners, the number of elements can be prohibitively

large even after symmetry reduction.

A well-known fact is that iterative reconstruction algo-

rithms possess a non-uniform convergence property [18].

That is, low-frequency components of the image tend to be

recovered earlier in iterative reconstruction than high-fre-

quency components which contain a large amount of noise.

There has been some evidence presented by other researchers
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supporting this hypothesis [19]. The study of convergence

properties of the MLEM algorithm by Fourier analysis

revealed clearly the non-uniform frequency response of the

EM algorithm [18]. Moreover, preliminary investigations of

inverse Monte Carlo-based reconstruction indicate that the

recovery of spatial frequency information is achieved at dif-

ferent numbers of iterations for different spatial frequencies:

higher spatial frequencies appear at higher iterations while

the lower frequencies (smooth structures) are well defined at

early iterations [13].

The distribution of scattered photons in nuclear imag-

ing (SPECT and PET) has been studied extensively [20-22].

In terms of the frequency response, the scatter components

of PET projection data tend to be dominated by low-frequen-

cy information, though there is some middle- and high-fre-

quency information present. The SRBSC approach takes

advantage of this by estimating the scatter component from

forward projection of images reconstructed in early iterations

of OSEM.

The method we propose estimates the scatter distribu-

tion from these forward projected data. A pure additive

model of the imaging system is assumed here where the

recorded data are composed of an unscattered and a scattered

component plus a noise term due to statistical fluctuations,

and can be written in the following form [21]:

P0=Pu+Ps+ (2)

where po are the observed data, pu and ps are the unscattered

and scattered components respectively, and  is the noise term.

The problem to be addressed consists in estimating the

unscattered distribution (pu) from the measured data (po) con-

taminated by scatter, or alternatively estimate the scattered

component (ps) and then derive pu. The observed data can be

modeled as a convolution of the source distribution with the

system response function. The total response function of the

scanner can be divided in two response kernels correspond-

ing to the scattered and unscattered components, srf and urf,

respectively. For modeling purposes, two assumptions can be

made: the stationary and nonstationary assumptions. In the

stationary assumption, the scatter is assumed to be analyti-

cally defined and not dependent on the object, activity distri-

bution, etc. The nonstationary assumption overcomes this

problem by taking into consideration the dependence of scat-

ter upon source locations, object size, detector angle, etc.

Using the additive imaging model combined with the station-

ary assumption and neglecting statistical noise, the measured

data can be related to the true activity distribution ( f ) by the

convolution relation:

P0=fwdproject(f) (urf+suf)=pu+ps    (3)

where denotes the convolution operator. Within the limits

of our assumptions, the activity distribution, f, can be rough-

ly divided in two parts:

f=fL+fH    (4)

where fL denotes the low-frequency image and fH the high-

frequency one. The range of low-frequency components is

assumed to be equivalent to the frequency range correspond-

ing to the scatter component ps as detailed in the following

derivation of the method. In PET, the scatter response kernels

extend far outside the source activity, i.e. contain low-fre-

quency components while the unscatter response kernels are

limited to a small region corresponding to the location of the

source distribution. Thus, the scatter components correspond

to the low-frequency range in the source distribution. Based

on the assumption that the high-frequency components will

be smeared, i.e. filtered by the scatter response kernels, the

scatter components in the projection data can be approximat-

ed as follows:

ps=[fwdproject(fL )+fwdproject(fH )]    srf
≈ fwdproject(fL )    srf (5)

The proposed SRBSC method for scatter correction

exploits the properties mentioned above. Figure 1 shows a

flow chart of the general principles of the method. The basic

steps followed when applying the method consist of the fol-

lowing:

(1) estimate the low-frequency components by only one

OSEM iteration;

(2) obtain the scatter components by forward projection of
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the estimated image convolved with appropriate mea-

sured or Monte Carlo simulated scatter response kernel

srf;

(3) subtract the estimated scatter components scaled by the

SF from measured projections;

(4) reconstruct the image using any available reconstruction

algorithm (analytic, iterative) using scatter corrected pro-

jection data.

The scatter distribution is modeled as the convolution

of the forward projected data with the scatter response func-

tion on the 2D projections. As opposed to the convolution-

subtraction method which operates on projection data highly

contaminated by scatter and requires several iterations to

produce acceptable results, the present method estimates the

scatter distribution in the image space in a single-pass

process but requires an additional forward projection step.

This allows avoiding the non-linear behaviour of iterative

scatter compensation methods.

Methods

Parameterization of Scatter Component

To characterize scattered radiation in 3D PET, experi-

mental phantom studies and Monte Carlo simulations have

been extensively used in different imaging situations and

scanning conditions. The Monte Carlo method has proven to

be very useful for modeling the scatter response function

(srf) [20-24]. However, on-the-fly calculations for each

patient is still a dream with current desktop computers avail-

able in PET centers, which renders the clinical routine imple-

mentation of such an approach impractical. In a previous

paper, we described a simple method for analytically estimat-

ing the scatter component in the projection data for a known

source and uniform attenuating medium as a scatter model

[22]. Three possible applications of this scatter model are

forward-projection of the data for use in iterative reconstruc-

tion-based scatter compensation, the analytic generation of

simulated projection data for applications requiring large

numbers of data sets of different projection data such as

observer studies or training of neural networks, and position-

dependent scatter kernels for non-stationary convolution sub-

traction-based scatter correction methods [2-3,20]. The para-

meterization of the scatter distribution function is performed

by fitting simulated response functions to a line source with

mono-exponential kernels. The scatter fractions were also

parameterized by a simple fitting function.

The 3D OSEM Reconstruction Software

The EM algorithm is applied in emission tomography

as an iterative technique for computing maximum likelihood

estimates of the activity density parameters. Hudson and

Larkin [25] presented an accelerated version of the EM algo-

rithm based on an ordered sets approach. The OSEM algo-

rithm processes the data in subsets (blocks) within each itera-

tion; this procedure accelerates convergence by a factor pro-

portional to the number of subsets. Many independent tests

proved that OSEM produces images which are similar in

quality to those produced by the EM algorithm in a fraction

of the time.

A software implementation of OSEM [26] using a flex-

ible and modular object-oriented library for 3D PET recon-

struction [27] was used. The algorithm combines the forward
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Figure 1. Flow-chart illustrating the general principles of
statistical reconstruction-based scatter correction (SRBSC)
technique
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and backprojection operators with an appropriate choice of

ordered sets to fully use all symmetry properties for fast

computation. There are various choices for the first estimate

of the source distribution such as a uniform field, or an

image obtained from earlier iterations or another reconstruc-

tion algorithm such as filtered backprojection. Some groups

reported that the use of the backprojection of the measured

data as the first estimate is a good starting point. Our investi-

gations did not confirm these observations, thus we used a

uniform image as a first estimate.

To confirm the fast convergence properties of the low-

frequency components in statistical reconstructions, a clini-

cal oncology study was reconstructed using 24 subsets with

1, 2, 3 and 10 full iterations of OSEM. This study was recon-

structed by pure OSEM without iterative or post-filtering.

Figure 2 illustrates a slice reconstructed with different num-

bers of iterations. It can be noticed that the quality of the

images is degraded when the number of iterations is

increased up to 10 where the MLEM solution starts to

diverge. This is a well-known phenomenon in iterative recon-

struction and may be explained by the fact that OSEM is

based on convergence of the reprojected data of estimated

images to the measured noisy projections. Therefore, the

reconstructions will converge to noisy images and may

diverge from the solution image when we increase the num-

ber of iterations.

The scatter components converge very rapidly in the

first iterations of OSEM. Figure 3 shows the profiles of scat-

ter distribution in one sinogram plane as estimated by the

SRBSC method after 1, 2 and 3 iterations of OSEM using 2

subsets. No appreciable differences are visible on the plot.

Similar results have been obtained on other projection

planes. This indicates that the estimated scatter components

converge in the first iterations of OSEM and has some inter-

esting practical consequences, the most important being that

one iteration of OSEM is sufficient to assess the distribution

of low-frequency scatter. This property makes the method

very fast, which renders its implementation in clinical rou-

tine viable.

Phantom Simulations, Experimental and Clinical Studies

Scatter correction techniques can be evaluated using

Monte Carlo simulation studies, experimental phantom mea-

surements, or clinical studies. Monte Carlo simulation is

extremely useful as it allows separating scattered and unscat-

tered events and comparing the estimated and true scatter

components. Previously reported Monte Carlo validations of
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Figure 2. OSEM reconstructions of a PRT-1 oncology study
at the level of the thorax using 24 subsets and different num-
bers of iterations: they are from top left, clockwise: one full
iteration, 2 iterations, 3 iterations, and 10 iterations, respec-
tively

Figure 3. Profile of the scatter component in a projection
plane of the clinical oncology study estimated by SRBSC
using 2 subsets with one (solid line), two (dotted line) and
three full iterations (dashed line) of OSEM
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scatter correction techniques and related parameters have

often been made by using simple source, attenuating medium

geometries and compositions. In addition to these evalua-

tions, there is also need to investigate more clinically realis-

tic source distributions to validate and compare scatter cor-

rection techniques. An evaluation of the relative performance

of this method was performed using measurements of a

physical Hoffman 3D brain phantom (Data Spectrum Corp.,

Hillsborough, NC, USA) with a grey-to-white matter ratio of

5:1 and Monte Carlo simulated data of a 3D digital brain

phantom [28]. Evaluations have also been performed for the

Utah phantom [29] to characterize the method for more stan-

dard geometries and allow determination of whether perfor-

mance in the standard geometry predicts performance in the

clinically realistic source distribution. The unscattered com-

ponent in the simulated projection data was recorded and

used as a reference to which the corrected projections using

SRBSC were compared.

A calculated attenuation correction using a constant

linear attenuation factor (µ = 0.096 cm-1) was used for simu-

lated phantoms. Transmission data using 68Ge rotating rod

sources were used instead in the experimental phantoms and

clinical studies. The 3D attenuation correction files are creat-

ed by forward projection through the reconstructed 2D atten-

uation map. The reprojection method (3DRP) [30] was used

to reconstruct the data sets with and without applying the

scatter correction technique. The maximum acceptance angle

used for 3D reconstructions corresponds to 6.2˚.

Well-established metrics are used to assess image qual-

ity. This includes calculations of the contrast and absolute

concentrations measured in the different compartments of the

Utah phantom, the signal-to-noise ratio and the recovery

coefficient. Different regions of interest (ROIs) were defined

and the average number of events within each ROI computed

for both ideal, non-corrected and scatter corrected images.

The Hoffman brain simulation was evaluated by calculating

the activity recovery for 13 irregular ROIs over structures

that are of special importance in neuroanatomy. The image

slice used for calculating the ROIs was the one including the

basal ganglia [14].

The proposed scatter correction algorithm was also

tested on clinical data obtained on the PRT-1 scanner from

the Geneva University Hospital [31]. This is a BGO-based

partial-ring rotating 3D only tomograph. Cerebral and oncol-

ogy clinical studies were selected from the database and used

for clinical evaluation of the scatter correction method.

Results

Figure 4 shows a comparison of a profile through a

sinogram plane representing the true unscattered component

as estimated by the Monte Carlo simulations and by the scat-

ter correction procedure for both the Utah phantom and the

3D Hoffman brain phantom. The scatter correction technique

gives a reasonable estimation of the unscattered component
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Figure 4. Integral profiles through a sinogram plane of the
simulated unscattered component (solid line) and the scatter
corrected sinogram using SRBSC (dashed line) for (A) the
Utah phantom (B) and the 3D Hoffman brain phantom

(A)

(B)
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and successfully brings the activity to zero faster outside the

object. A better estimation of the unscattered component can

be seen for the simple geometrical Utah phantom with a uni-

form source distribution than for the Hoffman brain phantom

with a complex source distribution.

The reconstructed images of the physical Utah phan-

tom with activity in the outer compartment are shown in

Figure 5. Horizontal profiles through the images are also

illustrated. The scatter correction technique improves the

quality of the images and allows a better definition of the

cold cylinder (right small cylinder in Figure 5) compared to

the case where only attenuation correction is applied,

however, the images appear noisier after scatter subtraction.

The results of the quantitative analysis of the data corre-

sponding to figure 5 are summarized in Table 1. Obviously,

the scatter correction method improves the contrast and

absolute quantification compared to the case where no cor-

rection is applied without significantly increasing the noise.

It has been shown that the SRBSC method predicts reason-

ably well the contrast and that statistical noise is insignifi-

cantly changed even when a significant amount of scatter is

originating from outside the FOV.

Table 2 shows the results of the quantitative evaluations

of the percentage activity recovery before and after applying

the scatter correction technique for the 13 irregular ROIs,

which cover important structures of the brain [14]. The

SRBSC technique tends to undercorrect for scatter in most

regions but gives very good activity recovery values, which

average within 1%. The effect of scatter removal in areas

where no activity is present (e.g. CSF) is clearly seen and the

contrast between grey and white matter is improved and the

structures are more clearly delineated (not shown). Results

obtained using the SRBSC approach for scatter correction in

cerebral 3D PET scans (homogeneous attenuating region)

seem to be accurate and well adapted to this kind of studies

[14].

Figure 6 illustrates a slice from the uncorrected and

scatter corrected 3D clinical study at the level of the thorax.

It should be noted that for the whole-body, it is difficult to

assess the effect of the scatter correction on the images

2001;14:161-172 2001 9 14 3
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Table 1. Absolute concentrations and contrast measured in the different compartments of the scanned Utah phantom with atten-

uation correction only (AC) and after applying the scatter correction technique (SRBSC). The mean and standard deviations are

shown. The signal-to-noise ratio (SNR) measured in the background (A) is also shown. The outer compartment (E) was filled

with activity concentration equal to that in the background region

Figure of merit
Absolute concentration 

Contrast (%) SNR
(kBq/ml)

Case/Compartment B D C A

Calibration concentration 5.88 4.86 100 —

AC 7.94±0.3 5.47±0.2 64.60±1.1 19.04±4.7

SRBSC 6.76±0.3 4.90±0.2 86.78±3.3 16.81±4.6

(A)

Figure 5. (A) Reconstructed images of the physical Utah
phantom with activity in the outer compartment (out of
field-of-view activity). The images shown are: NC (left), AC
(center), and SRBSC (right). (B) Horizontal profiles through
the centre of the image illustrated in (A): NC (dotted line),
AC (dashed line), and SRBSC (solid line)

(B)
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shown. However, the streak artefacts seen in the attenuation

corrected image only have been reduced after scatter subtrac-

tion. The physics of photon interactions indicates that in a

low-density region, the amount of scattering is negligible.

However, many incorrectly positioned LORs will be assigned

to projection data through the low-density region with simi-

lar probabilities to an adjacent, more dense region, as a result

of the coincidence detection method [21]. This is a possible

explanation for the fact that the presence of a small, low-den-

sity region will hardly be visible on the scatter profile in the

projection data. However, for obvious reasons, the measured

attenuation correction factors applied to this low-density

region will be lower. The resulting effect after reconstruction

is the underestimation of scatter contribution from this

region. This illustrates one of the possible interactions of

scatter correction with the other correction and processing

techniques (e.g. attenuation).

Discussion and Conclusions

The image quality of PET reconstructions is degraded

by a number of physical factors including: (1) the attenuation

of the photons travelling towards the detector; (2) the detec-

tion of scattered as well as primary photons; (3) the finite

spatial resolution of the imaging system; (4) the limited

number of counts one is able to collect when imaging

patients; and (5) physiological, as well as patient motion.

While the quantitative accuracy of 3D PET is limited mainly

by attenuation and scatter corrections, it may also be influ-

enced by the choice of the reconstruction algorithm. It is

important to know both systematic and statistical errors in

activity quantification when using different reconstruction

algorithms. Historically, once one had obtained the best pro-

jection data feasible, one typically applied compensations for

these degradations either prior to or after reconstruction with

filtered backprojection. Currently, the preferred compensa-

tion strategy is becoming the incorporation of modeling

these degradations into an iterative reconstruction method.

This trend is likely to continue into the future, and these

methods become routinely employed clinically.

Much research and development has been concentrated

on the scatter compensation required for quantitative 3D

PET. Increasingly sophisticated scatter correction procedures

are under investigation; particularly those based on accurate

scatter models, and iterative reconstruction-based scatter

compensation approaches. Monte Carlo methods give further

insight and might in themselves offer a possible correction

procedure [32]. The main difference among the correction

methods is the way in which the scatter component in the

selected energy window is estimated. The most reliable

method to determine the actual amount of scatter in the

image is physical modelling of the scatter process to resolve

the observed energy spectrum into its unscattered and scat-

tered components. By observing how accurately a scatter

correction algorithm estimates the amount and distribution of
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Table 2. Percentage recovery calculated in different struc-

tures of clinical interest in the Hoffman 3D brain phantom

with attenuation correction only (AC) and after applying the

scatter correction technique (SRBSC). The average and stan-

dard deviation (s.d.) for all the ROIs are also shown

Recovery (%)

ROI AC SRBSC

R1 110.8±0.8 101.7±0.2

R2 113.5±1.1 101.0±0.3

R3 114.9±1.3 100.1±0.3

R4 113.9±0.2 100.4±0.1

R5 119.7±1.0 100.6±0.3

R6 122.2±1.3 100.7±0.6

R7 111.1±0.5 101.5±0.0

R8 113.8±0.5 100.9±0.1

R9 113.5±0.2 100.4±0.1

R10 112.7±0.1 100.6±0.1

R11 120.9±1.1 101.1±0.5

R12 121.8±0.8 100.5±0.1

R13 122.5±1.5 103.3±1.1

Average 116.2 101.0

s.d. 4.4 0.8

Figure 6. Reconstructed images of an oncology study at the
level of the thorax. The images shown are from left to right:
NC, AC, SRBSC, respectively



PET
Reconstruction-based estimation of scatter in PET

scatter under conditions where it can be accurately measured

or otherwise independently determined, it is possible to opti-

mize scatter correction techniques. A number of scatter cor-

rection techniques have been proposed and successfully

implemented in 3D PET [2-4, 6-8,32]. Approximately exact

modeling in iterative reconstruction may become the method

of choice as computing times and algorithms continue to

improve. It is worth to note that most research performed in

this area is concentrated in the field of SPECT imaging

[5,16,33]. Application of this class of algorithms in PET is

highly desired.

Scatter corrected images have poorer signal-to-noise

ratio illustrated by a decrease of the signal-to-noise ratio,

which can be explained by the scatter subtraction process and

the reduction of the statistics in the acquired data sets.

However, the quantitative accuracy is greatly improved. A

remarkable enhancement of the contrast in the different com-

partments of the Utah phantom (Table 1) and the recovery

coefficient in the different structures of the 3D Hoffman

brain phantom (Table 2) are noticed after scatter subtraction.

The immunity to noise in emission data of statistical recon-

struction-based scatter correction methods makes them par-

ticularly applicable to low-count emission studies.

Contribution of scatter from outside the FOV is a chal-

lenging issue that needs to be addressed with large axial FOV

3D PET scanners. The dual-energy window method [6] was

reported to be more successful in correcting for scatter origi-

nating from outside the FOV [11]. The SRBSC technique

estimates the scatter directly from measured data whereas the

dual-energy window method is sensitive to contributions

from both in- and out-of-FOV activity. Nevertheless, it is

believed that this is not a major problem in cerebral studies

and small axial FOV tomographs. The problem remains cru-

cial for abdominal and thoracic studies where contribution of

scatter from outside the FOV is not negligible.

For the data presented in this paper, OSEM reconstruc-

tions were performed using 2 subsets to estimate the scatter

component. The method is sensitive to the number of subsets

chosen to reconstruct the low-frequency image. For a large

number of subsets, one iteration of OSEM do not provide a

low-frequency image, in which case the forward projection

will be almost identical to the measured projection data. The

SRBSC approach is computationally efficient as it can be

easily implemented on vector or parallel computing hardware

and the software required either for forward projection or

fast Fourier transform is widely available in the public

domain. Moreover, the low spatial frequency nature of the

scatter distribution allows reducing the data size by coarse

rebinning in the radial and axial direction without sacrificing

the accuracy in the scatter distribution estimation [16].

The statistical errors in the scatter corrected data have

not been fully investigated. The error propagation has not

been fully analysed and therefore no error limits have been

given. In order to fully assess the characteristics of the

SRBSC method, further evaluation of the uncertainty needs

to be made. It is concluded that the present method improves

the contrast compared to the case when no correction is

applied and that an accurate modelling of the scatter compo-

nent is essential for a proper scatter correction. Moreover, it

performs slightly better than the convolution-subtraction

method [3] and provides better signal-to-noise ratio [14].

The method has already been applied in SPECT imag-

ing [17]. We believe that the basic principles of the method

could also be applied to other scanner geometries including

dual-head coincidence gamma cameras and the combined

PET/CT system as well as to other imaging modalities such

as transmission CT and combined SPECT/CT. However, the

success of such applications will depend on the efficient and

accurate calculation of scatter responses from objects with

non-uniform density. Completion of the proposed SRBSC

algorithm for scatter correction by including accurate models

for detector efficiency, multiple scatters, scatter from outside

the f ield-of-view and a number of minor improvements

would enable quantitative, fully 3D PET imaging in the head

and the body.
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